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ABSTRACT 

This paper presents our work on acoustic-to-articulatory inversion 
mapping, in which, the articulatory data is the MRI series for artic-
ulators on mid-sagittal plan. Deep architectures based on restricted 
Boltzmann machine (RBM) and linear regression are employed to 
construct the audio-visual mapping. We test two architectures to in-
itialize the neural network: the bottom-up stacked RBM with top re-
gression layer architecture and the one with extra Gaussian-Ber-
noulli RBM on the top of the former architecture. GMM-based map-
ping is used as baseline method. The MRI data from USC-TIMIT 
database is used for the training. The experimental results show that 
the deep regression network is an effective model to construct the 
mapping from acoustic speech signal to articulatory MRI series, and 
also indicate that it is a better strategy to initial the top layer as 
Gaussian-Bernoulli RBM to compress the MRI data before the liner 
regression. 
 

Index Terms— acoustic-to-articulatory inversion, MRI, deep 
regression network, deep neural network 

 

1. INTRODUCTION 

The acoustic-to-articulatory inversion mapping is to predict the 
movements of human articulators from acoustic speech signal. The 
inversion mapping techniques are useful in several domains. In auto 
speech recognition system, the articulatory information can improve 
its performance [1]. In the study of talking head, it can be used to 
generate the motion of articulators such as lips and jaw [2]. Moreo-
ver, visual cues from articulatory movements can enhance speech 
perception [3]. The inversion mapping is an ill-posed problem for its 
one-to-many nature and high nonlinearity, which makes it a difficult 
task. Many machine learning methods have been applied to tackle 
this problem, such as the artificial neural networks [4], hidden Mar-
kov models [5, 6] and Gaussian mixture model (GMM)-based map-
ping [7, 8]. Deep architectures have also been used to obtain high 
accuracy in the inversion task, and achieve good result [9]. For the 
training of the mapping models, rich articulatory datasets are 
needed, which should contain quantitative articulatory position data 
along with recordings of acoustic data produced. Various methods 
are used to record a speaker’s articulatory movements, including X-
ray films [10, 11], magnetic resonance imaging (MRI) series [12], 
3D motion capture and electromagnetic articulograph (EMA). In the 
prior works, EMA data is the most widely used data for it has high 
temporal resolution. However, the disadvantage of EMA is its low 

spatial resolution, and it is very hard to infer the vocal tract shape 
from separated positions of EMA sensors. On the contrary, MRI se-
ries for speech researches can provide dynamic information from the 
entire mid-sagittal plane of a speaker’s vocal tract, or any other scan 
plane of interest. Mid-sagittal MRI captures not only the movement 
of lips, tongue and jaw, but also organs like the velum and glottal, 
which cannot be monitored with other techniques. MRI databases 
for continuous speech have been built by many groups in recent 
years, such as the mngu0 database [13] and USC-TIMIT database 
[12, 14]. Even though the sampling rates are lower than EMA or X-
ray film, MRI is a unique source of dynamic information about vocal 
tract shaping. 

In order to take advantages of articulatory MRI data and the good 
performance of deep architecture, we implement the experiments on 
acoustic-to-articulatory inversion mapping, in which, the articula-
tory data is the MRI series for articulators on mid-sagittal plan. This 
is a novel work in the study of the inversion mapping. Deep archi-
tectures based on restricted Boltzmann machine (RBM) [15] and lin-
ear regression is employed to construct the audio-visual mapping. 
We test two criterions for the unsupervised pre-training of the neural 
network: the stacked RBMs with top regression layer, and the 
stacked RBMs with regression layer in the second top layer. USC-
TIMIT database is adopted in the experiments. 

The rest of this paper is organized as follows: Section 2 describes 
the deep regression neural network architectures; Section 3 de-
scribes the data and its preprocessing procedural; Section 4 give the 
details of our experiments and the evaluation of the systems. We 
conclude this paper in Section 5. 

2. DEEP ARCHITECTURES 

We use deep belief networks for regression to construct the mapping 
between acoustic parameters and MRI data. The network architec-
tures are adapted to solve the audio-visual multi-regression problem. 
Deep regression networks have been successfully applied in the 
acoustic-to-articulatory inversion mapping by Uria et al. [9], in 
which the articulatory data is EMA data. Considering the gray val-
ues of the MRI frames as output features, this method can also be 
used to build the mapping between acoustic features and MRI data. 

2.1. Deep regression neural network 

The first architecture (architecture I) of deep regression neural net-
works in shown in Figure 1 (I), in which the input data � is the 
acoustic feature vectors and the object � is the gray value vectors of 
MRI images, ℎ� denotes the �th hidden layer. In architecture I, the 
first layer is Gaussian-Bernoulli RBM, the second and higher layer 
are Bernoulli-Bernoulli RBMs, the top layer is a linear regression 
layer. A RBM is an undirected graphical model formed by a visible 
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layer � and a hidden layer	ℎ. The states of the units in one layer are 
conditionally independent given the state of the units in the other 
layer. For Bernoulli-Bernoulli RBM, the conditional distributions 
have the following expression: 

�(�� = 1|ℎ) = sigm(−�� −��∙ℎ)                     (1) 

��ℎ� = 1��� = sigm�−�� −�∙�
���                     (2) 

where sigm(�) = 1/(1 + ���) is the logistic sigmoid function,  ��∙ 
corresponds to the �th row and �∙� corresponds to the �th column of 

the weight matrix. �� and �� are the bias for visible and hidden units, 

respectively. A Gaussian-Bernoulli RBM (GB-RBM) [16] is a RBM 
whose visible units are real valued and follow a Gaussian probability 
distribution with diagonal covariance, while the hidden units are still 
binary valued and follow a Bernoulli distribution. The conditional 
distribution of � given ℎ has the expression: 

�(��|ℎ) = �(−�� −��∙ℎ, ��)                       (3) 
where �(�, σ) denote Gaussian distribution with mean � and stand-
ard deviation �. ��	is the standard deviation for visible unit �. For 
problems with continuous input features, binary visible unit is not 
an appropriate representation of the data, so that GB-RBM is used 
in the unsupervised pre-training of the first layer. 

The most popular approximation for maximum likelihood train-
ing of RBM parameters is contrastive divergence (CD) learning 
[15], which is used in this paper. The training process for the whole 
network is to train each hidden layer treating the latest pre-trained 
hidden layer as the visible layer of a new RBM. The top layer is a 
linear regression layer, of which the input value is obtained by feed-
ing the input data through all the layers trained previously, and the 
object is �. The regression layer can be initialized by solving the 
linear regression problem directly using the least square error solu-
tion. Finally, all of the parameters in the network are fine-tuned us-
ing back-propagation (BP) algorithm. The activation function of 
each hidden layer is sigmoid function. 

2.2. Proposed deep architecture for inversion mapping 

For problems with high dimension object like MRI images, dimen-
sion reduction is usually needed. Considering the dimension reduc-
tion for the object of linear regression, we can use GB-RBM to en-
code the MRI frames before linear regression. Since the MRI frames 
are the object of the deep regression neural networks. We add an 
additional GB-RBM layer between the output layer and the linear 
regression layer. In this architecture the top hidden layer is the com-
pressed representation for the MRI frames. Figure 1 (II) illustrates 
this architecture (architecture II). Its training process begins by pre-
training the RBMs below and above the regression layer respec-
tively, and then initials the regression layer parameters with the 
value of two hidden layers. When initial the regression layer, the 
object �� is not binary value but real value which is the linear com-
bination of �, where the weights and bias are from top GB-RBM. 
Finally, all of the parameters in the network are fine-tuned using BP 
algorithm. 

There is a difference between the top RBM layer and the bottom 
RBM layer for this specific problem. For the bottom layer, the input 
data is acoustic spectrum and energy, which are approximately fol-
low Gaussian probability distributions, therefore, after the z-score 
normalization of the spectrum features, the distribution of each input 
data component can be modeled by a standard Gaussian distribution 
�(0, 1) and thus the conditional distribution of � given ℎ is: 

�����ℎ� = ��−�� −��∙ℎ, 1�                           (4) 

For the pre-training of the top layer, the training MRI data will 
be feed to the visible layer of RBM. In the MRI frames, the variation 
of gray value of some pixels are very small during the speech, such 

as the nose region and the background region (see Figure 2). There-
fore, the gray values will only normalized by subtracting mean but 
will not divided by standard deviation to avoid small-value division. 
For each component of the MRI data (gray value of MRI frames), 
we calculate the standard deviation through all training data, and 
model its distribution with a Gaussian which have zero mean and its 
true deviation. The components are independent to each other. The 
conditional distribution of � given ℎ is: 

�(��|ℎ) = ��−�� −��∙ℎ, ��
�
�                         (5) 

where ��
�

 is the standard deviation of the �th component of �. ��	is 

��, the �th component of �. The hidden units ℎ are binary. 

3. DATA 

We use the MRI data form USC-TIMIT [14] database, which con-
tains large-scale data of synchronized audio and MRI data for speech 
research. Subjects’ vocal tracts were imaged in the mid-sagittal 
plane while reading 460 TIMIT sentences. The MRI image resolu-
tion in the mid-sagittal plane was 6868 pixels (2.92.9mm). The 
image data were reconstructed as 23.18 frames/second. The audio 
was simultaneously recorded at a sampling frequency of 20 kHz in-
side the MRI scanner while subjects were imaged. 

We use only one speaker’s data from this database. The position 
of speaker’s head may slightly change across different files in the 
database. The inconsistence of the head position may cause signifi-
cant shake move of head in the estimated MRI series because the 
same phoneme may uttered from different head positions. To cope 
with this problem, we align the head position across files using the 
following method: firstly, we calculate a mean image for each MRI 
file, then manually mark five landmarks on the outline of the head 
in the mean images. Rigid transformations involve only translation 
and rotation were calculated to align the landmarks to a standard po-
sition (e.g. the positions in the first file), then we implement this 
transformation to all frames of the file. The mean images for tow 
files and their landmarks are shown in Figure 2 (a) and (b). This 
alignment procedure can alleviate the head shake in the estimated 
MRI series. 

Figure 1. Deep architectures for mapping from acoustic features to 
MRI images: (I) a deep regression network with � hidden layer and 
top linear regression layer; (II) a deep regression network with extra 
RBM above the linear regression layer. 
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In the inversion task we only interested in the motion of articu-
lators. Many parts of the MRI images are barely move during the 
speech such as the nose, part of the neck and part of the nasal cavity, 
as well as the black background. Therefore, we cut the border of the 
MRI images, and use an interest region with 4040 pixels, which 
contains all the articulators who will move during the speech (lips, 
jaw, tongue, teeth, velum, glottis, etc.). The upper-left point of the 
interest region is (16, 20) in the original images. The interest region 
is shown in Figure 2 (c). The pixels outside the region were not used. 
Therefore, the dimension of one MRI sample vector is 1600. 

The audio waveforms were divided into frames, the frame length 
and shift were 25ms and 4.31ms, respectively. The acoustic data 
were parameterized with 24 order line spectral pairs (LSPs) and log 
energy. We use a context window of 10 acoustic frames, thus, each 
input window will span a period of 43.1ms, which is the same to that 
of one MRI frame. The dimension of each input vector is 250. 

4. EXPERIMENTS  

We use the data of speaker f1 in the experiments. The data was sep-
arated into 3 groups: training, validation and test, which contain 360, 
47 and 50 sentences, respectively (the audio of 3 sentences were 
missing in the original dataset). To measure the accuracy of our sys-
tems we use the average over test data of the root mean-squared error 

(RMSE) �(1/�)∑ (��� − ��)
�

� 	, where ��� is the estimated gray value 
vector and �� is the actual one of the MRI frame at time �, � is the 
number of test samples. 

4.1. Network training configuration 

The training configuration parameters for pre-training of RBM us-
ing CD learning and the fine-tuning using BP are shown in Table 1. 
They are the results of manually tuning to obtain a low reconstruc-
tion error. For the pre-training of linear regression layer, we use nor-
mal equation with regularization term, which has the expression: 

�
��
��
� = ���

∗���
∗ + � �

0
��×�	

��
��

��
∗���         (6) 

where �� is the weight for the linear regression layer and �� is the 
bias vector. ��

∗ = [1 ��], �� and �� are the input and object of the 
regression layer respectively, they are obtained by feed the training 
data through the pre-trained RBMs. �� is the training target in archi-
tecture I. � is the regularization parameter, which is used to control 
the scale of weights, � is identity matrix. We set � = 10 and 35 in 
architecture I and II, respectively, which are the results of manually 
tuning, to achieve a lower regression error. The linear regression 
layer was trained before the fine-tuning of the whole network.  

For architecture I, different number of layers and units were 
trained, and their performances on the validation set using the 

RMSE criterion are shown in Figure 3. We can observe that the best 
results are obtained with 2 hidden layers and 512 units per hidden 
layer, which has an average RMSE of 16.8.  

For architecture II, we froze the network under the regression 
layer to be two hidden layer with 512 unit per layer, and vary the 
unit number of the top hidden layer. Their performances on the val-
idation set are shown in Figure 4. We can observe that when the top 
layer has 128 units, the system has the best result, which is an aver-
age RMSE of 16.76. Some of the weight of this layer after CD train-
ing is shown in Figure 5, from which we can observe that this layer 
is focusing on the pixies that have significant variations and thus will 
reflect the motion of the articulators. According to these experi-
mental results, we set the final architecture of the proposed method 
as having four hidden layers and 512 units for the first two layer, 
128 units for the top layer. 

4.2. Baseline  

We also train the inversion mapping with a widely used regression 
method, GMM-based mapping using minimum mean square error 
criterion, which have been used for acoustic-to-articulatory inver-
sion mapping [7]. PCA whiten is applied on both the acoustic spec-
trum and MRI data vectors to reduce the dimensions. The acoustic 
and MRI data use the same number of components, which is 64 in 
the experiments. The RMSE performance on validation data of the 
GMM-based mapping is 17.89, 17.87 and 17.53 with the Gaussian 
mixture number of 32, 64 and 128 respectively. The GMM configu-
ration that lead to the best mapping performance will be regarded as 
baseline. 

4.3. Results and discussion 

The performances of the two deep architectures and GMM-based 
mapping on the test set are shown in Table 2. The best result of deep 
architecture is an average RMSE of 17.74, which is significant lower 
than that of the GMM-based mapping. The distribution of the 
RMSEs for pixels in the MRI frame is shown in Figure 6. We can 
observe that the dark border of tongue in GMM-based mapping is 
slightly broader than that in the proposed method, which indicates 
that the estimated tongue shape of proposed method is more accu-
rate. 

From Figure 6 we can also observe that there is relatively higher 
error in the outline of nose, which is believed to be caused by the 
inconstancy of head position in the database, because nose will not 
move along with speech. From this phenomenon we can infer that 
the error on other part of the images is also partly caused by this 
reason. 

Figure 7 shows four continues MRI images estimated by the pro-
posed method and the actual MRI images. The estimated images 
have a blur effect compared with the actual ones. The contrast ratio 

Table 1. The configure parameters for the training of networks 

 RBM BP 

Learning rate 0.0001 0.01 

Momentum 
0.5 (10 first epochs) 
0.9 (rest of epochs ) 

- 

Total epochs 200 100 

Minibatch size 100 100 

Initial weights N(0, 0.01) - 

Initial visible bias 0 - 

Initial hidden bias 0 - 

Learning rate scaling 1 0.99 

 
 

         
(a)                                 (b)                                (c) 

 
Figure 2. (a) and (b) show the mean images and five marker’s posi-
tions (white circles) for align the head position of two MRI series 
files respectively. (c) is the interested region in the MRI images 
(within the white rectangle) 
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of the estimated images is lower than actual ones and the contours 
of the organs are less clear. We can observe that the movement of 
articulators are accurate. The velum, glottal are at the right state for 
the current pronunciation. The shapes of lips and tongue are also 
very close with actual ones, and specifically, the collision between 
tongue tip and upper teeth is well recovered. Beside the tongue tip 
and upper teeth, most articulator collisions can be estimated from 
our observation, such as the tongue dorsum and the velum, tongue 
body and the hard palate. 

The deep architecture II has better performance on validation 
data compared with architecture I. In Figure 3, the best RMSE per-
formance for architecture I with 3 hidden layer is 16.94, which is 
achieved by using 512 units per layer. Using the same layer number 
and unit number, the architecture II achieved an average RMSE of 
16.78 as shown in Figure 4. This results indicate it is a better strategy 
for this problem that pre-training the top layer as RBM and use it as 
an encoder for the object of the liner regression. When using archi-
tecture II, the best units’ number for the top hidden layer is 128, 
which is less than that for acoustic spectrum parameters. This indi-
cates that the mid-sagittal plan MRI image has a lower degree of 
freedom, and it contains less information than acoustic data, which 
is true because the image only contains 2-dimensional information 
of articulation. When compressing the MRI images into 64 dimen-
sions, the GMM-based mapping has 17.53 average RMSE on vali-
dation data while that of the deep regression network with 64 units 
in top hidden layer is 16.78. From the experimental results we can 
infer that proposed deep regression network is an effective way to 
construct the audio-to-visual mapping for the estimation of the MRI 
series. The top GB-RBM plays an important role to abstract the MRI 
information. The architectures with more RBM layer between the 

object and the regression layer is not presented in this paper, because 
they did not give better result than use only one RBM for the MRI 
data. 

5. CONCLUSIONS 

We present the novel work on estimating the articulatory MRI series 
from acoustic speech signal. We found deep architectures are able 
to obtain better inversion accuracy than GMM-based method. We 
implemented two architectures to pre-training the neural networks: 
the stacked RBM with top linear regression layer and the one with 
linear regression in the second top layer. The second architecture 
was proven to be a better one. In our future work, analysis based on 
the estimated MRI series using image processing technology will be 
carried on, such as contour extraction for vocal tract. We will also 
improve the evaluation metric for the inversion mapping, the vocal 
tract shapes will be compared systematically with that in actual MRI 
series, so that we can know more details about the visual information 
provided by the inversion mapping algorithm. 
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Figure 3. RMSE performances of architecture I as functions of the 
number of hidden layer units. The hidden layers have the same 
units’ number. 
 

 
Figure 4. RMSE performance of architecture II as a function of the 
number of the top RBM layer. The networks structure blow the re-
gression layer are set to 2 layers with 512 units each layer. The “0” 
in horizontal axis correspond to the best result achieved by archi-
tecture I. 

 
Table 2. The average RMSEs performance on the test set. 

 GMM Architecture I Architecture II 

Avg. RMSE 18.48 17.76 17.74 
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Figure 5. Visualization of some of the weight in the top GB-RBM 
after CD training, the number of hidden units is 512. 

 

 
Figure 6. Distribution of average RMSEs for pixels in MRI frames 
for (a) deep regression network (b) GMM-based mapping.  
 

 
Figure 7. A series of estimated MRI images by deep regression net-
work using architecture II and the actual images. 
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