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ABSTRACT

This paper presents a method for voice conversion using deep neural
networks (DNNs) trained with multiple source speakers. The pro-
posed DNNs can be used in two ways for different scenarios: 1)
in the absence of training data for source speaker, the DNNs can
be treated as source-speaker-independent models and perform con-
versions directly from arbitrary source speakers to certain target s-
peaker; 2) the DNNs can also be used as initial models for further
fine-tuning of source-speaker-dependent DNNs when parallel train-
ing data for both source and target speakers are available. Exper-
imental results show that, as source-speaker-independent models,
the proposed DNNs can achieve comparable performance to con-
ventional source-speaker-dependent models. On the other hand, the
proposed method outperforms the conventional initialization method
with restricted Boltzmann machines (RBMs).

Index Terms— voice conversion, deep neural networks, source-
speaker-independent mapping

1. INTRODUCTION

Voice conversion (VC) is a technique that changes speaker charac-
teristic of the speech of source speaker in order to make it sound-
ed like that of the target speaker. Many approaches have been pro-
posed for spectral conversion in voice conversion during the past
decades [1, 2, 3, 4, 5, 6, 7]. Statistical methods are popular nowadays
because of their stable performance in different conversion pairs.
Among these statistical methods, Gaussian mixture model (GMM)
based methods became the mainstream methods, especially after the
method of utilizing joint density GMM (JDGMM) with dynamic
features and parameter generation considering global variance (GV)
was proposed [8].

However, there are several problems in the JDGMM-based ap-
proaches. One of them is that the spectral conversion described by
JDGMM is a piece-wise linear transformation function, which is in-
sufficient to model the nonlinear mapping relationship between two
speakers. Recently, neural network (NN) based approaches have at-
tracted much research attention. In some of these approaches, the
NNs are used as generative models, e.g., restricted Boltzmann ma-
chine (RBM) [9], conditional RBM (CRBM) [10] and generatively
trained deep neural network (DNN) [11], to derive the condition-
al distributions for generating converted spectral features. The oth-
er approaches directly use NNs to learn nonlinear feature mapping
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functions between the spectral features of source and target speaker-
s [12] [13]. DNN has the ability to model highly nonlinear mapping
relationship between spectra of two speakers because it usually con-
tains several hidden layers with nonlinear activation functions, such
as sigmoid, tanh. The second problem is that most of the models in
conventional approaches, including NN-based approaches, are built
for conversions of certain source and target speakers, which means
that we need to construct a conversion model for each pair of con-
version. This makes the use of conventional methods inflexible.

In this paper, we propose a new training strategy for DNN in
order to learn a source-speaker-independent mapping function. The
source-speaker-independent model is learned from the training data
of multiple source speakers with a global input layer. Benefitting
from the strong modeling ability, DNN can learn the distribution of
acoustic space containing many speakers and perform automatic s-
peaker interpolation for the input of unknown speakers at conversion
stage. Two structures of DNNs are adopted in this paper according
to the number of target speakers employed in the output layer: s-
ingle target DNN (ST-DNN) and multiple targets DNN (MT-DNN).
MT-DNN is proposed in the light of multi-task learning [14]. In
MT-DNN, the learning of mapping function to one target can help to
improve those to other targets. The proposed DNNs are trained using
pre-stored parallel utterances of multiple speakers. In the application
cases where no training data of source speaker is available, the es-
timated source-speaker-independent model can be used directly to
convert the spectral features of source speaker, which are unseen in
the training set, to those of the target speaker. Further, if parallel
training data of source and target speakers are available, the pre-
trained DNNs can be used as initial models for further fine-tuning
of source-speaker-dependent model instead of the conventional pre-
training method using RBMs [15]. Experimental results show the
effectiveness of the proposed methods.

This paper is organized as follows. We give a brief introduc-
tion of the conventional JDGMM based method in section 2. De-
tailed technique descriptions of our proposed methods are presented
in section 3. In section 4, we show the experimental conditions and
results. A conclusion of this paper is made in the end.

2. SPECTRAL CONVERSION USING JDGMM

Let Xt, Yt represent spectral features of source and target speak-
ers, respectively. The joint distribution of Zt = [X⊤

t ,Y ⊤
t ]⊤ is

described by a GMM in JDGMM system:

P (Zt; η
(z)) =

M∑
m=1

βmN(Zt;µ
(z)
m ,Σ(z)

m ),
M∑

m=1

βm = 1, (1)
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where η(z) = {βm,µ
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parameter set of GMM, M is the number of mixture components,
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are the weight,

mean vector and covariance matrix of the m-th mixture. The param-
eters are estimated with estimation-maximum(EM) algorithm.

In [8], correlations between frames are considered by modeling
the static and dynamic features together so as to improve the con-
tinuity of converted spectra. In this condition, the converted static
speech sequence is generated under the maximum output probabili-
ty parameter generation criterion:

y∗ = argmax
y

P (Y |X, η(z)), (2)

s.t. Y = Uy, (3)

where X is the source feature sequence augmented with dynamic
features, U is a window matrix that is used to generate static and
dynamic features from the static features.

3. PROPOSED METHOD

3.1. Spectral Conversion Using DNN

Feedforward DNNs can be directly used to estimate the spectral
mapping function between source speaker and target speaker [12].
Since hidden nodes in NNs are usually characterized by nonlinear
functions, such as sigmoid, tanh functions, DNN has the ability to
model the nonlinear mapping relationship between spectra of the
two speakers. Figure 1 illustrates the spectral conversion process
using DNN. The bottom layer is the input layer of source spectral
features while the top layer is the output layer of converted spectral
features. In this paper, concatenated spectral features of the source
speaker, which are three consecutive frames including the current,
preceding and succeeding frames, are adopted as the input features.
Only the frame of converted spectral feature corresponding to the
current input frame is generated in the output layer .

Conventionally, DNN is used to model the mapping function for
a certain speaker pair. The model is trained with parallel utterances
of a single source and a single target speaker. However, this train-
ing strategy cannot realize flexible conversions because new DNNs
have to be built for new speaker pairs. In order to cope with this
problem, we propose a new training strategy for DNN-based voice
conversion which is to learn a source-speaker-independent mapping
function. Multiple source speakers are used in this training method.
DNN is trained in attempt to map the input spectral features of these
source speakers to those of the same target speaker. Due to the good
generalization ability, DNN can capture the feature space of multiple
source speakers well. Therefore, DNN is able to perform appropri-
ate speaker interpolation for source speaker who is unseen in the
training data set at conversion stage.

Two types of DNN are adopted for constructing the source-
speaker-independent model in this paper, according to the structures
with different numbers of target speakers in the output layer, i.e.,
single target DNN (ST-DNN) and multi-target DNN (MT-DNN).
The training strategies for the conventional DNN and the proposed
ST-DNN, MT-DNN are presented in the following sections.

3.2. DNN Trained with Single Source and Single Target

Conventional DNN is trained with parallel data set of single source
and single target speaker. The training process includes two steps:
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Fig. 1. The spectral conversion process using DNN. In this paper,
the spectral features of 3 concatenated frames are used as the input
while DNN outputs the converted feature vector corresponding to
central frame.

1) Pre-training step: DNN trained with random initialization of-
ten gets trapped in a poor local optima. A pre-training method
that train a deep belief network (DBN) as the initial model
can be used to improve the performance of DNN [15]. The
training process of a DBN is conducted by learning a stack of
RBMs [16] using the training data of source speaker.

2) Fine-tuning step: feature sequences of source and target s-
peakers are aligned to the same length in advance. Then the
back propagation (BP) algorithm is used to estimate the pa-
rameters of the DNN using the minimum mean square error
(MMSE) criterion. The model parameters are usually updat-
ed using the mini-batch gradient descent (MBGD) algorithm.

3.3. DNN Trained with Multi-source and Single Target

Parallel utterances of multiple source speakers and a certain target
speaker are used for the training of ST-DNN. The training process
also takes two steps: pre-training and fine-tuning. The pre-training
process is conducted as the same as that of conventional DNN except
that all the training data of multiple source speakers are used.

During the fine-tuning process, feature sequence of each source
speaker is aligned to that of the target speaker in advance. The ST-
DNN is optimized by minimizing the summation of mean square
errors of utterances from all source speakers in the training set. The
objective function is defined as follows:

L(θ) =

S∑
s=1

T∑
t=1

||yt − f(xt,s, θ)||2, (4)

where yt is the target spectral feature vector at frame t, the total
number of frames is T , xt,s is the spectral feature vector of the s-
th source speaker at frame t, S is the number of pre-stored source
speakers in the training set. f(x) denotes the mapping function built
by ST-DNN, which is written as

f(xt,s, θ) = W (L+1)⊤ [hL ◦ · · · ◦ h2 ◦ h1(xt,s)] + b(L+1), (5)
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where L is the number of hidden layers, hL◦· · ·◦h2◦h1(x) defines
a combination of functions hL, · · · ,h1:

hi(x) = 1./(1 + exp(−W (i)⊤x− b(i))). (6)

The ST-DNN can be applied to perform spectral conversion di-
rectly from arbitrary source speaker to the target speaker after this
fine-tuning process. However, when parallel training utterances of
the new source speaker and the target speaker are available, ST-DNN
can be used as an initial model for further fine-tuning of the source-
speaker-dependent DNN training.

3.4. DNN Trained with Multi-source and Multi-target

For ST-DNNs with different target speakers, what is learned for one
ST-DNN could be beneficial to the others. The bottom part of these
ST-DNNs would have lots in common as they all attempt to learn the
source-speaker-independent mapping function using the same mul-
tiple source speakers. According to the multi-task learning theo-
ry [14], the learning processes of these ST-DNNs will be promoted
if they are trained in parallel by sharing the information learned in
the bottom parts of networks. Therefore, we merge these ST-DNNs
together by sharing weights of the first L layers in order to improve
the performance of each ST-DNN. Weights of the last layer are kept
for each target speaker. We denote this new model as multi-target
DNN (MT-DNN).

Similar to ST-DNN, the training process of MT-DNN also in-
cludes two steps. The pre-training process is exactly the same as
that of the ST-DNN. At the fine-tuning stage, supposing there are S
pre-stored source speakers and N pre-stored target speakers, feature
sequence of each source speaker is aligned to that of each target s-
peaker. The obtained S×N parallel data sets are used for MT-DNN
training.

The mapping function from a given input spectral feature xt,s

to the n-th target speaker described by the MT-DNN is written as
follows,

g(xt,s, λn) = W (L+1)⊤
n [hL ◦ · · · ◦h2 ◦h1(xt,s)]+b(L+1)

n , (7)

where λ = {{W (l), b(l)}Ll=1, {W
(L+1)
n , b

(L+1)
n }n=N

n=1 } is the pa-
rameter set of MT-DNN, W (L)

n , b
(L)
n are the weight matrix and bias

in the last layer corresponding to the n-th target.
The parameters of MT-DNN are learned by minimizing the sum-

mation of mean squared error of all the conversion pairs, the objec-
tive function for training the MT-DNN is defined as follows

L(λ) =

N∑
n=1

S∑
s=1

Tn∑
t=1

||yt,n − g(xt,s, λn)||2, (8)

where Tn is the total frame number of the n-th target. Similarly, we
use BP algorithm with MBGD to estimate the parameters.

The spectral conversion with MT-DNN model can be conducted
using (7) directly. If parallel data set of the new source speaker and
the desired target speaker are available, parameters in MT-DNN cor-
responding to the desired target speaker can serve as an initial model
for further DNN training.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental Conditions

Our experiments were conducted on a Mandarin parallel speech data
set. This data set includes 90 speakers. Each speaker utters the same

100 sentences. Waveforms are recorded in 16kHz/16bit format. We
randomly chose 80 speakers in the corpus as the training speaker
set and the remaining 10 speakers as the test speaker set. The num-
ber of sentences for training, validation and testing were 70, 15, 15,
respectively. 24-order mel-cepstral coefficients were used as spec-
tral features. Transcripts of the utterances were used to segment and
align the feature sequences.

In order to evaluate the general performance of our proposed
methods, conversions from the test speakers to 6 target speakers were
conducted and performed. The 6 target speakers, including 3 male
and 3 female, were randomly selected from the training speaker set.
Four systems were compared in our experiments:

a) JDGMM: Static mel-cepstral feature, together with dynamic
and acceleration components were used as the spectral fea-
ture. The mixture number for all conversions in the experi-
ments were set as 256.

b) DNN: Conventional DNN system trained with single source
and single target speaker, DNNs were initialized with DBNs;

c) ST-DNN: The proposed source-speaker-independent DNN
trained with multi-source speakers and single target speaker.
The target speaker was randomly selected from the training
speaker set and all the 80 speakers in the training speaker set
were adopted as the source speakers.

d) MT-DNN: The proposed source-speaker-independent DNN
trained with multi-source speakers and multi-target speakers.
All the 80 speakers in the training set were used as the source
speakers as well as the target.

In addition, conversions conducted by DNNs initialized with ST-
DNN and MT-DNN were also built in our experiments in order to
evaluate the effectiveness of applying ST-DNN and MT-DNN as ini-
tial models for source-speaker-dependent DNNs training.

3 concatenated mel-cepstral feature vectors were used as the in-
puts of the networks, while the networks output static feature vec-
tors. The training data were normalized to zero mean and unit vari-
ance before training. Architectures of DNN, ST-DNN and MT-DNN
were set to the same. The number of hidden layers is 4. Each layer
has 512 hidden nodes. Learning rates for all the listed networks are
0.002, 0.01 and 0.01 while the sizes of mini-batch of the correspond-
ing systems are set as 10, 10 and 100, separately. The learning rate
and mini-batch size for fine-tuning of DNNs with the initialization
of ST-DNN or MT-DNN are 0.001 and 10. L2 regularization items
are employed during the training processes in order to prevent over-
fitting, the value of regularization coefficients for the training of all
networks is 2× 10−5.

In this paper, pitch conversion was conducted using the tradi-
tional linear transformation in log-scale.

4.2. Experimental Results

4.2.1. Source-speaker-independent Mapping

The performance of ST-DNN and MT-DNN for directly conversions
of new speakers are evaluated in Table 1. Mel-cepstral distortions
(MCDs) between the converted mel-cepstra and the target were cal-
culated as the objective measurement. For each target speaker, the
average MCD of conversions from the 10 test speakers was calcu-
lated. We can see that DNN shows less conversion accuracy than
JDGMM in this Mandarin database in general while in conversions
to some target speakers it still gets smaller average MCDs, e.g. m 1,
m 3. As a whole, both JDGMM and DNN demonstrate more accu-
rate conversion performance than ST-DNN and MT-DNN, which is
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Table 1. Average mel-cepstral distortions (dB) for conversions to 6
target speakers.

target JDGMM DNN ST-DNN MT-DNN
m 1 4.86 4.69 4.85 4.81
f 1 4.91 5.33 5.44 5.38
m 2 4.82 5.17 5.31 5.22
f 2 5.02 5.17 5.24 5.22
m 3 4.92 4.80 4.88 4.83
f 3 4.86 4.95 5.04 5.01

average 4.90 5.02 5.13 5.08

2.50  

2.60  

2.70  

2.80  

2.90  

3.00  

3.10  

3.20  

3.30  

3.40  

Naturalness Similarity 

JDGMM DNN ST-DNN MT-DNN 

Fig. 2. Average mean opinion scores of JDGMM, DNN, ST-DNN
and MT-DNN on speech naturalness and similarity.

reasonable as training data of new speakers are used in construction
of JDGMM and DNN. While using no training data, ST-DNN and
MT-DNN obtain acceptable spectral distortions. Besides, MT-DNN
outperforms ST-DNN due to the effect of multi-task learning.

To evaluate the speeches converted by the source-speaker-
independent DNNs, we carried out mean opinion score (MOS) tests
on speech naturalness and similarity. 40 utterances were set as the
listening set, which were randomly selected from the test utterances
of all the 60 conversion pairs. All the conversion types, i.e., male-
to-male, male-to-female, female-to-male, female-to-female, were
included in this set. Six expert listeners took part in the tests. The
results are given in Figure 2. As DNN conducts non-linear conver-
sion while without statistical average effect of statistical modelling,
waveforms generated by DNN are perceived to be better than those
generated by JDGMM. MT-DNN gets almost the same performance
of ST-DNN in both speech naturalness and similarity. It is possible
that the inadequate number of layers in the top of MT-DNN for dif-
ferent target speakers weaken the multi-task learning effect. Speech-
es generated by ST-DNN and MT-DNN obtain comparable auditory
performance to those by JDGMM, while perform slightly worse
than DNN. Nevertheless, the proposed source-speaker-independent
DNNs enjoy the advantage that no utterances of new source speaker
are needed for training compared with both JDGMM and DNN. It
would be more convenient to perform VCs with the use of ST-DNN
and MT-DNN.

4.2.2. Source-Speaker-Dependent DNN Initialized by ST-DNN/MT-
DNN

In Table 2, we evaluate the effectiveness of setting the source-
speaker-independent DNNs as initial models for DNNs training.
The results show that the conversion accuracy of DNNs can be im-
proved by using ST-DNN or MT-DNN instead of RBMs as initial

Table 2. Average mel-cepstral distortions (dB) of DNNs with differ-
ent initializations for conversions to 6 target speakers. DNN-1 rep-
resents conventional DNN initialized with RBMs while DNN-2 and
DNN-3 are source-speaker dependent DNNs initialized by ST-DNN
and MT-DNN models respectively.

target DNN-1 DNN-2 DNN-3
m 1 4.69 4.55 4.53
f 1 5.33 5.21 5.18
m 2 5.17 5.04 5.01
f 2 5.17 5.01 4.98
m 3 4.80 4.65 4.65
f 3 4.95 4.73 4.71

average 5.02 4.86 4.84

Table 3. Results of preference tests. DNNs initialized with RBMs,
ST-DNN and MT-DNN were compared with each other. N/P repre-
sents for no preference, p is the p-value of a two-tail t-test.

DNN-1 DNN-2 DNN-3 N/P p

Naturalness
8.33 18.75 - 72.92 <0.01
9.58 - 19.17 71.25 <0.01

- 15.42 10 74.58 >0.05

Similarity
6.25 5.83 - 87.92 >0.05
7.5 - 4.58 87.92 >0.05
- 10.42 7.5 82.08 >0.05

models, which is owing to the prior conversion information con-
tained in the source-speaker-independent-DNNs. MT-DNN works
slightly better than ST-DNN all the same in this test.

Furthermore, conversion performances of DNNs initialized with
RBMs, ST-DNNs and MT-DNNs were compared with each other
using preference tests. The same six persons participated in these
tests. Results are presented in Table 3 and show that the speech
naturalness converted by DNN can be improved with the initializa-
tion of source-speaker-independent models while speech similarity
gets no significant improvements. Though in objective tests, DNNs
initialized with MT-DNNs works slightly better than those with ST-
DNNs , subjective results show that there is no significant difference
between them on both speech naturalness and similarity.

5. CONCLUSIONS

This paper describes a new training strategy for spectral mapping
using deep neural network (DNN). Multiple source speakers are
used during the training process for the purpose of constructing a
source-speaker-independent mapping function. The source-speaker-
independent DNN can perform conversion of arbitrary source speak-
er when no training data of this speaker is available. When parallel
data set of new source speaker and the target speaker is avail-
able, it can serve as an initial model for source-speaker-dependent
DNN training. Experimental results show that the source-speaker-
independent DNNs can achieve comparable performance to the
source-speaker-dependent approaches, such as JDGMM and DNN
based approaches. And DNNs initialized with the source-speaker-
independent models outperform those with RBMs. Due to the
limitation of the number of available pre-stored speakers, the per-
formance of ST-DNN trained with more source speakers are not
investigated in this paper. This is one of our future works.
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