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ABSTRACT 
 
An experiment is described relating to estimation of strength of 
evidence in likelihood ratio-based forensic voice comparison. It is 
asked whether a better performance is obtained from point 
estimation of formant pattern targets in monophthongal vowel 
acoustics rather than formant trajectories. The hypothesis is tested 
on non-contemporaneous recordings of a custom-built challenging 
database of 26 young Australian female voices performing a map 
task. Evaluation with the log likelihood ratio cost validity metric 
Cllr shows that both trajectory and target perform well, but that 
contrary to phonological predictions, evidence based on 
monophthongal F-pattern trajectory is superior to target point 
measurements.  
 

Index Terms— Forensic voice comparison, likelihood ratio, 
F-pattern, female voices, similar-sounding speakers  
 

1. INTRODUCTION AND AIM 
 

In forensic speaker recognition the expert typically compares 
suspect and offender speech samples to help the trier-of-fact 
decide whether the suspect said the incriminating speech. It is now 
acknowledged, at least theoretically, that the expert's help should 
consist in furnishing the interested parties with an estimate of the 
strength of evidence, or likelihood ratio. This means estimating 
how much more likely one is to get the speech evidence – the 
observed differences between the known suspect and unknown 
offender speech samples – assuming the incriminating speech has 
come from the suspect (the prosecution hypothesis Hp) rather than 
someone else in the relevant population (the defence hypothesis 
Hd). This ratio of conditional probabilities of speech evidence Esp 
under competing hypotheses p(Esp | Hp) / p(Esp | Hd) quantifies the 
strength of the evidence and is the likelihood ratio (LR) [1].   

In a real case, for example a $150 million dollar telephone 
fraud [2], the LR tells the trier-of-fact how strong the evidence is. 
Its other function, as in this paper, is the essential testing of the 
discriminability of various forensic media, e.g. DNA [3], 
fingerprints [4, 5], handwriting [6], SMS texts [7] and speech [8]. 
To illustrate this second use, figure 1, from [9], shows the 
cumulative distribution of LRs from 297 same-speaker and 43,956 
different-speaker comparisons on non-contemporaneous landline 
recordings of male Japanese speakers separated by about six 
months. LRs from different-speaker comparisons increase towards 
the left; same-speaker LRs towards the right. The feature being 
tested is the cepstral spectrum of the five Japanese vowels 
parametrised by a set of LPC cepstral coefficients, and the two sets 
of curves – one more, one less peripheral – show the effect of 

cepstral mean subtraction as a channel compensator. The excellent 
separation around log10 0 in this so-called Tippett plot conveys 
visually that LRs based on the cepstral spectra of vowels can 
discriminate well between same-speaker and different speaker 
speech samples – read-out vowels make the task very easy, even 
for non-contemporaneous telephone speech – but that the 
performance is enhanced by cepstral mean subtraction. The 
performance of a system like this, equivalently its validity, is 
properly assessed by the information-theoretic log likelihood ratio 
cost Cllr [10] which is now the metric of choice for LR-based 
detection systems. Cllr values below unity indicate that the system 
is delivering information; features with good strength of evidence 
will have values well below unity. It can be seen that both the 
cepstrally and non-cepstrally mean subtracted Cllrs (cms Cllr, raw 
Cllr) are well below unity, but the former is better. Strictly 
speaking the use of error rates with LRs is incorrect: by Bayes' 
theorem a prior probability is still required to decide whether the 
suspect said the incriminating speech. However, assuming flat 
priors for convenience, they still remain useful as indicators of 
discriminative power. The inset shows EERs of less than 0.1% for 
both features. 

Emerging in the late 1990's, this logical approach to forensic 
speaker recognition using LRs – now often called likelihood ratio-
based forensic voice comparison (LR-FVC) – became, after DNA, 
part of the new paradigm for the evaluation of forensic evidence 
[11]. It now seems to have survived two initial Kuhnian stages in 

Figure 1: Tippett plot for LRs derived from comparisons using 
vocalic cepstral spectra. Solid lines = LRs with cepstrally-mean-
subtracted-CCs; dotted lines = LRs from raw CCs. Insert shows 
detail around log10 = 0. cum. prop. = cumulative proportion. 
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the emergence of a new paradigm: out-of-hand rejection and 
ridicule [12]. Instead, LR-FVC research has shifted emphasis from 
(successfully) trying to demonstrate that it can indeed emulate the 
so-called “DNA gold standard” [13] with both automatic and 
traditional approaches [14] to focusing on solving problems within 
the new paradigm that will enable improvements in the use of the 
LR in real case-work in different languages. Typical research 
questions address the inevitable problems with reference sample 
uncertainty, choice and mismatch [15, 16, 17]; and the suitability 
of different kinds of models and frontends [18, 9, 19, 20]. This 
paper is a modest example of the latter, but differs slightly in its 
choice of speakers. 

Previous research [21, 22] has shown that, in the forensic 
comparison of diphthongal acoustics, where the formant pattern 
(F-pattern) is dynamic, better strengths of evidence are obtained if 
LRs are derived from F-pattern trajectories (quantified 
parametrically by either DCT or polynomial coefficients) rather 
than in traditional phonetic manner by measuring the F-pattern at 
two assumed diphthongal targets. However, in real-world case-
work suspect and offender speech samples are also compared with 
respect to monophthongal vowel acoustics, and so in this paper I 
want to see whether a trajectory approach is also superior to a 
target approach for monophthongs. It should not be, given they are 
phonetically characterized as having a relatively unchanging 
transitional aspect with only a single articulatory target [23]. 
However, FVC requires us, of course, to be able to use the 
strongest features possible to compare speech samples, and this 
must therefore be checked.  
 

2. SPEAKERS, ELICITATION, DATA 
 
The speakers used in this experiment, and the way their speech 
was elicited, were selected to present an a priori more challenging 
FVC task than normal. The calculation of a LR requires a between-
speaker variance estimate in order to say how likely the difference 
between suspect and offender is, assuming the offender is someone 
other than the suspect. Other things being equal, the greater the 
ratio of between- to within-variance, the better the forensic 
discriminability. The speakers were 26 (mostly) young Australian 
females recruited from the close friends of the research assistant 
involved in the experiment: from school, university, work and 
soccer team. Many of them knew each other. The choice of 
speakers homogeneous with respect to age, socio-economic 
background and close social group was intended to decrease the 
between-speaker variation and thus make the task more difficult. 
In addition, the elicitation sessions were all run by the research 
assistant, and it was expected that the enhanced interactivity 
between her and her mates would result in some typical in-group 
convergence, again contributing to a reduction in between-speaker 
variance. Finally, of course, female voices generally constitute 
more difficult investigatory objects than male, one reason being 
that their lesser harmonic density (from higher F0) means less 
acoustic information to define the spectral envelope. 

A map-task was devised to elicit natural speech while still 
controlling the speech segments required for forensic voice 
comparison. Subjects were given a map, co-ordinates at its edges, 
of a fictitious town marked with different features – roads, 
buildings etc. They first had to name any features they could spot 
at a set of given co-ordinates by giving both the feature's name and 
the co-ordinate, e.g. "What's at A5?" "Hmm, A5, the Eden railway 
station?" Then they had to give clear instructions how to get from 

one map location to another, making use of the map features.  

In this experiment feature names with the long mid-central 
monophthong phoneme // were used (the vowel in the word first). 
Its first three formants should lie within the nominal telephone 
bandwidth (0.3-3.5 kHz) and, according to Source-Filter theory, 
their assumed equidistant spacing will mean optimum formant 
amplitude. To control for prosodic context, the vowel was put in 
stressed word-initial position. The made-up feature names are 
given in table 1, where it can be seen that they were chosen to 
begin with onset consonants differing with respect to place of 
articulation: all active-articulator consonantal places (Labial, 
Dorsal, Coronal) are catered for, including zero. It turned out that 
subjects commonly used two more words with // in their 

navigation instructions: first /fst/ and turn /tn/, and these were 
also included, adding to the examples with Labial and alveolar 
onsets.  

This maximum range for prevocalic consonantal place was 
dictated, firstly, by forensic realism: one does not usually have the 
luxury of controlled place of articulation in real forensic speech 
samples. It also has the benefit of disfavouring the trajectory 
hypothesis. It is well known that the F-pattern trajectory at the 
onset and offset phases of a vowel reflects aspects of the 
perivocalic segments – F2 perturbations for example reflect place 
of articulation. Inclusion of consonants of differing place should 
increase trajectory, but not target, variability (and indeed LR 
experiments with formant trajectories have usually controlled for 
the effect of prevocalic consonants). The effect should also have 
been reinforced by the variation in post-vocalic consonant, which 
was not controlled for.  

Non-contemporaneous recordings are essential in FVC testing 
to preserve realistic within-speaker variation reflecting the details 
of the case [24], and 22 of the 26 subjects were recorded on two 
occasions separated by about one week. Elicitation was varied in 
the second recording to avoid learning effects.  

This data acquisition process yielded ample material for 
testing, with each speaker having about 16 // replicates per 
session for analysis. Notable was that many participants, including 
the research assistant administering the map task, extensively 
employed creaky voice phonation, especially on low boundary 
tones. This phonation type has been noted for upwardly mobile 
American females [25] and is also commonly heard from young 
Australian females. Presumably it is an indexical feature signaling 
in-group membership and an indicator of the close social 
connection within the test group. Although membership of a close 
social network does not guarantee this, initial listening also 
revealed several pairs of speakers that sounded alarmingly similar: 

Table 1.  Map task words with //. 
Map feature name Phonemic 

representation  
Passive 

articulator 
Ervine theatre vn  van  zero 

Erskinville lane sknvl zero 

Earthworks road wks zero 

Burn's freeway bnz labial 

BP service station  svs  alveolar 

Servant's boulevarde svnts alveolar 

St.Mary's church tt post-alveolar 

Curtis street kts velar 
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as a naïve listener I would not have been confident in telling them 
apart. In view of this, it was deemed useful to test how well naïve 
listeners unfamiliar with the voices could generally discriminate 
between same-speaker and different-speaker pairs from the cohort. 
The phrase A5, Eden railway station /e fav idn relwesten/ 
was selected as stimulus for its good sampling of the speaker's 
peripheral acoustic vowel space (from high front in /i/ thru low 
central in the first target of /a/ to high back rounded in /w/). Four 
same-speaker and six different-speaker pairs were prepared and 
presented to 41 volunteer listeners over the web. Forced same-
speaker/different speaker decisions were required, with no priors. 
The test is available at [26] and was reported in [27]. It showed 
both same-speaker and different-speaker pairs discriminated with a 
wide range of accuracy: 85%, 53%, 42% and 2% (same-speaker 
pairs); 100%, 92%, 75%, 51%, 22% and 79% (different-speaker 
pairs). The overall performance (60.5% correct), although low, is 
frequentist-significant; but it is more appropriate to consider the 
results Bayesian-forensically: from the point of view of the 
strength of evidence associated with a same-speaker or different-
speaker claim. The LR for a naïve listener's same-speaker claim 
(probability that a naïve listener claims that a given pair was the 
same-speaker, given that it was indeed the same speaker) is ca. 2.2, 
and the LR for a naïve-listener different-speaker claim p("it's 
different speakers" | different-speaker pair) is ca. 1.2. Both these 
strengths of evidence, approaching unity, are almost useless, and 
quantitatively reinforce admonitions to the legal profession about 
the low reliability of naïve non-familiar listeners' judgments [28].  

 
3. PROCESSING 

 
Real-world FVC case-work procedure was followed where 
possible. The words with stressed // tokens were identified 

aurally, the onset and offset of their // F-pattern determined by 
eye from wide-band spectrograms generated in Praat [29], and 
formants extracted. It is advisable with female voices to extract a 
higher number of formants than expected phonetically, as they 
typically have extra poles due to subglottal resonances from 
increased subglottal coupling [30]. This is illustrated in figure 2, 
which shows a wideband spectrogram, with extracted formant 
centre-frequencies superimposed, of the // vowel in a token of 
first. The presence of extra poles, which may also relate to 
increased subglottal coupling from the perivocalic spread-glottis 
voiceless fricatives [f, s], can be clearly seen in the increased 

bandwidth energy in the region of F4 and F2. The extracted centre-
frequencies put the extra poles at ca. 3.7 kHz and 1.5 kHz. It is 
important to be able to discount these poles, if they are present, 
otherwise the LPC estimate of the F-pattern centre-frequencies will 
fall between the true formant and the extra pole.  

 

 

 

 
Figure 3. Stressed // F-pattern (Hz) as function of duration (csec.) 
for non-contemporaneous recordings of a single speaker. Top two 
panels = raw values, bottom panel = means. 
 

Accordingly, the first six formants below 5 kHz were 
extracted with a specially written Praat script, and F1 F2 and F3 
identified from them using a simple custom-written tracking code 
in R [31]. The top two panels of figure 3 show the F-pattern in 
both non-contemporaneous recordings of a speaker with 14 // 
replicates in the first recording and 15 in the second. Considerable 
variation is seen in all formants, especially F2 and F3. The bottom 
panel of figure 3 compares the mean // F-pattern of these two 
recordings. It can be seen that they agree rather well in their mean 
F1 and F3, which are almost congruent, and in their mean duration. 
There is a bigger difference in F2, which is about 100 Hz higher in 
the second recording. The good mean F-pattern resolution from 
what initially appears rather messy raw data is surprising, but 

Figure 2. Spectrogram of // in first with extracted formant centre-
frequencies superimposed showing extra poles below F2 and F4.  
X axis = duration (csec.), y axis = frequency (Hz). 
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typical for the data. Important is that, even with the obviously 
simple trajectories of each formant in this bottom panel (taking 
their single minimum derivative point as the acoustic analog of a 
single articulatory target), one cannot talk of a single acoustic 
target at a single point in time: the putative target lies at different 
duration points for each formant, and for F2 at different points for 
the two recordings.  

The raw F-pattern trajectories were modeled with cubic 
polynomials following [32], and their coefficients extracted for LR 
processing (it was confirmed that, as previously, better results are 
obtained when polynomials are calculated from normalised as 
opposed to raw duration). This resulted in (4 coefficients * 3 
formants = ) 12 F-pattern trajectory coefficients per vowel. Point 
measurements were made of putative F-pattern targets at mid- and 
late (75%) vowel duration, giving (3 formants * 1 target ) = 3 F-
pattern target features per vowel.  

The test data consisted of F-pattern trajectory coefficients and 
F-pattern target measurements from the 22 speakers with non-
contemporaneous recordings. Each speaker's first recording was 
compared with their second (as in figure 3) to get 22 known same-
speaker LRs, and with the F-pattern of the other speakers' first 
recording to get 231 known different-speaker LRs. 

The reference sample for estimating the between-speaker 
variance consisted of the 22 test data speakers together with the 
other four speakers who had only one recording. Since there is a 
considerable overlap between test and reference data, leave-one-
out cross-calibration was used, whereby all data for the particular 
pair being tested are removed from the reference sample. The 
comparison was done using the multivariate kernel-density 
likelihood ratio (MVKD) formula developed at the Joseph Bell 
Centre for Forensic Statistics and Legal Reasoning [33], which 
has been used in many previous studies as well as real-world case-
work [2]. With heavily multivariate input such as the 12 trajectory 
coefficients, the MVKD output is often badly calibrated, and it is 
better to consider it not a LR but a score quantifying the ratio of 
the similarity of the difference between samples to their typicality 
given a suitable reference sample. It is usual then to calibrate these 
multivariate scores with logistic regression to convert them to true 
LRs [5]. This calibration was done using my R implementation of 
the focal toolkit [34].  
 

4. RESULTS AND DISCUSSION 
 
Figure 4 shows the results with a conventional Tippett plot 
(different-speaker LRs increase to the left, same-speaker LRs to 
the right). The fairly clear separation seen around log10 0 between 
same- and different-speaker LRs for all three sets of features 
(trajectory, mid-target, late-target) indicates that the F-pattern of 
these young female speakers' "schwa" vowel functions quite well 
in distinguishing same-speaker pairs from different: all three 
features have Cllrs below 0.4. I was surprised at this, given the 
noted auditory similarity in the cohort. It is also clear visually that 
the features based on the whole trajectory (solid lines) show 
superior validity to the target measurements, even for a 
monophthong, and this is confirmed in their Cllrs: 0.29 (trajectory) 
vs. 0.37, 0.36 (target). EER for the trajectory LRs is 8% – 9% 
compared to 12% for the late target LRs, and 13% – 14% for the 
mid-target LRs. All these results are of course expected to worsen 
with transmission over telephone channels, but their relative values 
should remain reasonably constant. 

These results show that, counter to phonetic predictions, 
greater strength of forensic evidence can be obtained from the 
trajectories of a monophthongal vowel rather than a point 
measurement of its target. It would appear to be the case that, even 
though this vowel has a single phonetic and phonological 
articulatory F-pattern target, speakers can still differ in how they 
realize it. A component of the between-speaker differences 
involved will also, of course, be due to differences in overall vocal 
tract length. Perhaps the difference between the trajectory and the 
target Cllrs quantifies the amount of contribution of the trajectory 
component over the target component. 

Given that it was intended to disadvantage a trajectory 
approach, the deliberately wide range of articulatory places chosen 
for the prevocalic consonant does not appear to have made much 
difference. The Cllr from an otherwise comparable set controlled 
for initial consonant place of articulation would be needed to judge 
this.  

Finally it is probably worth pointing out, in the spirit of the 
recent NIST Human Assisted SR, that, compared to the naïve 
listeners' values (2.2 & 1.2), the sensitivity-specificity LRs [2] of 
these (very limited) acoustic data are superior, especially for 
different-speaker judgments: log10LR > 0 is 9 times more likely 
with a same-speaker comparison; log10LR < 0 is 31 times more 
likely with a different-speaker comparison.  

 

 
Figure 4. Tippett plot of results. 
 

5. SUMMARY AND CONCLUSION 
 
A simple LR-based discrimination motivated by forensic voice 
comparison procedure has been described on a challenging cohort 
of female speakers. It has shown that, counter to phonetic 
prediction, greater strength of forensic voice comparison evidence 
is obtained from the F-pattern trajectory of monophthongs, rather 
than from their single putative acoustic targets, even with a wide 
range of place of articulation of surrounding consonants. Whatever 
the phonological implications, this suggests that it is sensible to try 
where possible to base vocalic LRs on formant trajectories in real-
world case-work. At least in Australian English //, and as far as 
place of articulation is concerned – one would not want to extend 
this to differing manners such as /r/ or /l/, which probably still 
exert too great a perturbatory influence on the vocalic F-pattern.  
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