ADVANCES IN DEEP NEURAL NETWORK APPROACHES TO SPEAKER RECOGNITION
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ABSTRACT

The recent application of deep neural networks (DNN) to speaker
identification (SID) has resulted in significant improvements over
current state-of-the-art on telephone speech. In this work, we re-
port a similar achievement in DNN-based SID performance on mi-
crophone speech. We consider two approaches to DNN-based SID:
one that uses the DNN to extract features, and another that uses the
DNN during feature modeling. Modeling is conducted using the
DNN/i-vector framework, in which the traditional universal back-
ground model is replaced with a DNN. The recently proposed use
of bottleneck features extracted from a DNN is also evaluated. Sys-
tems are first compared with a conventional universal background
model (UBM) Gaussian mixture model (GMM) i-vector system on
the clean conditions of the NIST 2012 speaker recognition evalu-
ation corpus, where a lack of robustness to microphone speech is
found. Several methods of DNN feature processing are then applied
to bring significantly greater robustness to microphone speech. To
direct future research, the DNN-based systems are also evaluated in
the context of audio degradations including noise and reverberation.

Index Terms— Deep neural networks, bottleneck features, nor-
malization, channel mismatch, speaker recognition.

1. INTRODUCTION

Recently introduced was a novel DNN/i-vector framework for
speaker identification (SID) on telephone speech [1]. Our subse-
quent study [2] demonstrated that, in the context of microphone
speech, the anticipated gains over the conventional UBM/i-vector
approach were not observed. Each of these studies focused on
single-channel (telephone or microphone) speaker enrollment from
the National Institute of Standards in Technology (NIST) 2012
speaker recognition evaluation (SRE) corpus. Consequently, the lit-
erature has yet to report on the core condition of SRE’12 involv-
ing both telephone and microphone data for speaker enrollment, a
scenario that could quite feasibly counteract the benefits of DNN/i-
vectors on telephone test conditions.

In the context of the conventional UBM/i-vector framework [3],
DNN-based language identification has emerged in which bottle-
neck (BN) features are extracted from a DNN and appended to
mel-frequency cepstral coefficients (MFCC) [4, 5]. Recent studies
have found both DNN/i-vector and BN systems highly successful for
language identification when dealing with the degraded audio from
the Defense Advanced Research Projects Agency (DARPA) Robust
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Automatic Transcription of Speech (RATS) program [6, 7, 8, 9].
The application of BN features to SID using telephone conversa-
tions was first conducted in [10]. Missing from the literature, how-
ever, are studies on how BN features perform on SID with micro-
phone recorded speech and the robustness of the DNN-based SID
approaches to noise and reverberation.

In this work, we start by comparing DNN-based SID approaches
on the NIST SRE’12 corpus. After finding only limited performance
gains for microphone speech compared to the UBM/i-vector system,
we evaluate common audio and feature processing methods aimed at
reducing channel mismatch. These include gain/volume normaliza-
tion of audio, mean and variance normalization (MVN), windowed
MVN and feature warping [11]. Feature processing is shown to con-
siderably improve DNN-based SID with which improvements over
current state-of-the-art microphone performance is obtained. Fi-
nally, the effect of re-noised and reverberated audio on DNN-based
SID is quantified alongside the conventional UBM/i-vector frame-
work. Future directions of DNN-based research are then discussed.

2. DEEP NEURAL NETWORKS FOR SPEAKER
RECOGNITION

Two DNN-based approaches to SID were recently proposed: the
DNN/i-vector framework [1] and the use of BN features extracted
from a DNN [10]. While the former integrates the DNN as part of
the SID modeling process, the latter, first applied to language iden-
tification in [4], uses the DNN to extract features for input into a
SID modeling framework. Intuitively, both of these approaches can
be used concurrently. This section provides an overview of these
techniques.

2.1. The DNN architecture

For both the DNN/i-vector framework and the extraction of BN fea-
tures, a DNN must first be trained. We use DNNS that are trained as
for automatic speech recognition (ASR) systems, to predict senone
posteriors. In state-of-the-art ASR systems, the pronunciations of all
words are represented by a sequence of senones Q (e.g., the tied-
triphone states). Each senone is used to model the tied states of a set
of triphones that are close in acoustic space. In general, the senone
set Q is automatically defined by a decision tree using the maxi-
mum likelihood (ML) approach [12]. The decision tree is grown by
asking a set of locally optimal questions that give the largest likeli-
hood increase, assuming that the data on each side of the split can
be modeled by a single Gaussian. The leaves of the decision tree are
the final set of senones.

Once the set of senones is defined, a Viterbi decoder is used to
align the training data into the corresponding senones. These align-
ments are used to estimate the observation probability distribution
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Fig. 1. System architecture for BN feature use in UBM/i-vector
framework, and DNN senone posterior use in DNN/i-vector frame-
work. Note the disjoint use of ASR features for the DNN compared
to features optimized for SID and the use of ) as a simplification
for the process of computing statistics.

p(z|q), where z is an observation vector in the training data and g
is the senone. The estimation of the observation probability distri-
bution and the realignment can be optimized alternatingly and itera-
tively. Traditionally, a GMM was used to model this distribution. In
recent systems, a DNN is used to estimate the senone posteriors of
the acoustic features: p(z|q) = p(q|z)p(z)/p(q), where p(z|q) is
the observation probability required for decoding, p(q) is the senone
prior and p(g|x) is the senone posterior obtained from the DNN. The
training of the DNN relies on a pre-trained hidden Markov model
(HMM) ASR system with GMM states to generate the training align-
ments. Once trained, the HMM component is no longer required for
the following two DNN-based approaches to SID.

2.2. Bottleneck Features from DNNs

BN features are extracted directly from the DNN architecture [4].
Rather than use a full set of hidden nodes in each layer of the DNN,
a layer prior to the output has a reduced number of hidden nodes so
as to constrain the flow of information through a bottleneck; in this
work, we restrict the second-to-last hidden layer to 80 nodes. The
linear output of the nodes in this hidden layer is taken as the BN
feature for each audio frame and used in a subsequent SID frame-
work. As is shown later in Section 5, appending these BN features
with spectral-based features (i.e., MFCCs) provides impressive SID
performance. Figure 1 illustrates the BN feature extraction scheme
and the optional augmentation using spectral features. The standard
UBM/i-vector or DNN/i-vector framework (see below) can then be
used for modeling the features derived from the DNN.

2.3. The DNN/i-vector framework

In contrast to BN features that extract information internal to the
DNN, the DNN/i-vector framework uses the posteriors of output
classes: the senones. The DNN is integrated into the SID frame-
work, rather than using the senone posteriors directly as features.
Specifically, the DNN is used in place of the UBM such that each
senone output becomes analogous to a single UBM component.
Consequently, alignments are sourced from the DNN instead of the

UBM when calculating the Baum-Welch statistics in the i-vector
framework. Figure 1 illustrates the data flow in the DNN/i-vector
framework compared to that of the UBM/i-vector framework. The
DNN/i-vector framework can be used in conjunction with BN fea-
tures, which is explored in Section 5.

The DNN holds an advantage in this role due to the supervised
definition of classes, which allows speaker-dependent pronuncia-
tions to be maintained within a single class. The UBM, in contrast,
is trained unsupervised based on data-driven clustering of classes;
while this latter approach better satisfies the Gaussian assumptions
made of the i-vector framework, it does not guarantee that the same
phones from different speakers are represented by the same compo-
nent. A further benefit of the DNN/i-vector framework is that any
standard SID feature can be used for first-order statistics calculation.
Additionally, in the context of multi-feature systems, only a single
set of alignments from the DNN is required, since the DNN is trained
on a single feature optimized for ASR performance. This does not,
however, preclude the use of the same feature for both purposes.

3. FEATURES OPTIMIZED FOR SID PERFORMANCE

The previous section provided details on the extraction of 80-
dimensional BN features considered in this work. For comparison,
we also evaluate the use of commonplace 20-dimensional MFCCs
with appended deltas and double deltas (using parameters optimized
for SID in [13]) and the recently proposed pcaDCT features [14].
The principal component analysis (PCA) discrete cosine transform
(DCT) features are proposed in an adjoining article in the same con-
ference [14] but details required for understanding the feature ex-
traction process are conveyed here for convenience.

3.1. pcaDCT Features

The pcaDCT feature is a data-driven, PCA-based compression of a
2D-DCT matrix of log mel filterbank energy outputs into a space rich
in speech variability. Extraction first involves taking F' log mel filter
banks (LMFB) outputs from an audio stream. A single feature vector
is derived by performing a 2D-DCT on a window of W LMFB out-
puts, subsampling the coefficients by dropping the first column in the
time domain, retaining the next % columns, then finally stacking the
remaining coefficients and projecting into a PCA space of reduced
dimensionality. In this work, we use F' = 32 filterbanks, a context
window of W = 25 and a PCA space of 60 dimensions. The PCA
space is learned from the stacked coefficients using a development
set of speech frames (as determined with speech activity detection).
The motivation here is to ensure features are rich in speech variabil-
ity. The development set used for PCA training was sourced from
1000 utterances from 200 speakers (5 utterances each) in both the
PRISM and SRE’12 system training datasets. Both telephone and
microphone channels were represented in this dataset. Readers are
directed to [14] for more details on pcaDCT features.

It is interesting to observe the similarities between pcaDCT and
BN features. In both cases, a window of log mel filter bank out-
puts are used as input. These inputs are then compressed either by a
DNN hidden layer or a PCA space. The difference is that the DNN
used for BN feature extraction requires transcripts for training, while
the PCA space for pcaDCT features requires a set of speech frames.
Consequently, given the improvements from pcaDCT features over
MFCCs (shown in both [14] and Section 5), pcaDCT may lend it-
self well to low-resource conditions where transcripts and sufficient
training data are not available.
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4. EXPERIMENT PROTOCOL

This study focuses on the use of pcaDCT features [14] and BN fea-
tures as described in Section 2.2. Section 5.1 additionally shows
results using MFCCs to initially illustrate the benefits of pcaDCT in
both UBM/i-vector and DNN/i-vector frameworks. All SID features
were mean- and variance-normalized across speech frames detected
via speech activity detection. Features for DNN training were raw
log mel filterbank outputs using 40 filter banks. Outputs from 15
consecutive frames were stacked to provide a 600-dimensional, con-
textualized input to the DNN. As in [2], the 5-layer DNNs, each
with 1200 nodes (except the BN feature extractor with 80 nodes
in the second-to-last hidden layer), were trained to classify 3,494
senones. Training data was sourced from 800 and 1300 hours of mi-
crophone and telephone speech, respectively. More details on the
DNN s trained from multi-channel data can be found in [2].

The extraction of i-vectors was performed using either a UBM or
DNN, followed by a i-vector/probabilistic linear discriminant anal-
ysis (PLDA) framework [3, 15]. UBMs consisted of 2048 compo-
nents, and the i-vector subspaces had a 600-dimensional rank. All i-
vectors were length-normalized and LDA-reduced prior to full-rank
PLDA. The use of 4096 components has been found to provide gains
over 2048 in the UBM-based framework [1, 9, 10]; however, this di-
mensionality was not explored due to computational constraints.

SRE’12 System: Gender-dependent systems were trained in the
same manner as our SRE’12 submission [16]. A subset of 8,000
clean speech samples was used to train UBMs for each gender. The
i-vector subspace was trained using up to 51k non-degraded speech
samples, while the 400D LDA reduction matrix and PLDA were
trained using using an extended dataset of up to 62k samples (26k
of which were re-noised). Unless otherwise stated, evaluation was
performed on pooled male and the female trials of the five extended
conditions defined by NIST with performance reported in terms of
equal error rate (EER) and Cprimary [17]; the latter is an average of
two operating points.

PRISM: The PRISM dataset [18] provides a set of trials in
which additive HVAC and babble noise (20dB, 15dB, and 8dB sig-
nal to noise ratio (SNR)) and additive reverberation (RT 0.3, 0.5,
and 0.7) can be evaluated. We use a 2048-component gender-
independent system based on a mixture of PLDA models [19]. Train-
ing data was sourced from the PRISM protocols. The UBM and i-
vector subspace was trained on up to 79k clean speech samples with
around 20k replaced with noisy, reverberated and codec-degraded
speech samples for use in PLDA training [20].

5. RESULTS

Initial experiments demonstrate the benefit of pcaDCT features over
MEFCCs on the NIST SRE’12 corpus in the context of both UBM
and DNN i-vector frameworks. An issue with respect to microphone
channels in the DNN/i-vector framework is then highlighted. A se-
ries of experiments then attempt to overcome the sensitivities of the
DNN-based systems to channel mismatch and degraded conditions.

5.1. Baseline experiments

Initial baseline results are reported using the female trials of the
clean microphone and telephone conditions from the SRE’12 corpus
(cl and c2). The aim of these results is to highlight the differences
between both features and SID frameworks under these conditions.
Figure 2 illustrates results from the UBM/i-vector and DNN/i-vector
frameworks using several different features: MFCC, pcaDCT and
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Fig. 2. Comparison on SRE’12 clean extended conditions of UBM
and DNN approaches using MFCC, pcaDCT, BN features (also aug-
mented) for female trials. Results highlight the loss in performance
from DNN-based approaches to SID for microphone conditions.

tel-clean (c2)

BN. First, we focus on the different features. In the UBM/i-vector
framework (the first three bars), we observe that UBM(MFCC) is
outperformed by pcaDCT and BN features on both channels. For
microphone speech, pcaDCT improves on BN by a relative 15%;
however, the opposite is true for telephone speech. For the DNN/i-
vector framework, denoted by DNN(feature), BN gave the worst
performance, with particularly degraded microphone trials. This is
likely an artifact of using DNNs, not well suited to the microphone
characteristics, for both feature extraction and modeling. The use of
augmented BN features consistently provided the best performance.
Interestingly, the difference between augmenting with MFCC vs.
pcaDCT is negligible. One hypothesis for this finding is that the SID
features provide information not represented in the BN features, and
this information is fundamental to any spectral feature.

Next we compare the UBM and DNN modeling frameworks.
For a given feature, the DNN/i-vector framework consistently out-
performs the UBM/i-vector framework on telephone speech. For
microphone speech, however, this trend does not hold. When based
on pcaDCT or augmented BN features, the UBM provides superior
microphone trial performance as compared to the best DNN/i-vector
system. This brings to light the difference in the way the DNN per-
ceives speech from each channel. Specifically, telephone speech is
inherently normalized for many factors (such as volume) due to the
method of audio acquisition, low variation in receiver characteristics
and restrained bandwidth. Acquisition of audio with microphones
on the other hand contains many variables for which data mismatch
becomes a natural part of any SID system. Fortunately, this has been
tackled in SID previously using common normalization strategies.
The following section investigates a number of such techniques as a
means of reducing channel mismatch in the DNN.

5.2. Reducing Channel Mismatch

Counteracting the issue of channel mismatch is nothing new in the
field of speaker recognition. Many simple and effective techniques
are currently in use for this purpose. Most commonly cited in litera-
ture is the use of MVN and feature warping for the post-processing
of SID features before extracting Baum-Welch statistics. In the
same way, we attempt to normalize the features input into the ASR
DNN (i.e., the ASR filter bank features in Figure 1). In the case
of MVN, we calculate the normalization statistics over the speech
frames of the audio recording. We additionally evaluate windowed
MVN (WMVN) in which speech labels were not taken into account;
instead, a sliding window of 3 seconds was used to calculate nor-
malization statistics. The same window size was used for feature
warping. Finally, we also analyze the effect of gain normalization
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Table 1. Baseline UBM(pcaDCT) vs. DNN-based SID systems on core-extended conditions of NIST SRE’12 (Cprimary/EER).

System mic-cln (c1) tel-cln (c2) mic-noi (c3) tel-noi (c4) tel-envnoi (c5)
UBM(pcaDCT) 0.142/1.59% 0.187/1.37% 0.074/2.17% 0.224 /2.37% 0.228 /1.90%
DNN(pcaDCT) 0.137/1.56% 0.158/1.10% 0.078 /2.03% 0.219/3.04% 0.185/1.39%
UBM(BN+pcaDCT) 0.122/1.38% 0.149/1.01% 0.068 / 1.97 % 0.220/3.05% 0.182/1.44%
6.0%
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Fig. 3. Use of different audio or feature processing techniques to re- éo*" & & ® N

duce channel mismatch during DNN training. Performance reported
on the female trials of the NIST SRE’12 corpus. The dashed lines
indicate the UBM(pcaDCT) performance level.

as an audio pre-processing step prior to feature extraction when no
feature post-processing was applied. Results on the female trials of
SRE’12 comparing these audio and feature processing options when
based on pcaDCT SID features are detailed in Figure 3. Note that
the goal here is not to compare BN vs. DNN, since they are based
in different domains, but to determine the most effective strategy
for DNN audio and feature processing. For reference, the baseline
UBM(pcaDCT) results are detailed as a dashed line across the plots.

Figure 3 indicates that the simple process of gain normalization
marginally improves both DNN and BN systems over the raw, un-
processed audio. Processing DNN features with MVN was the most
successful approach to reduce mismatch in the DNN; WMVN and
feature warping provided inconsistent trends between BN and DNN
results. Each of these feature processing techniques allow DNN-
based SID to improve over the UBM/i-vector framework for micro-
phone audio. For the final section on degraded conditions, we se-
lect MVN as the DNN feature processing option, which happens to
match the use of MVN for SID features.

5.3. Degraded Audio

The previous section attempted to counteract the issue of channel
mismatch in DNN-based SID systems. Feature post-processing was
effective in this task. This section aims to highlight other condi-
tions that hinder the performance of DNN-based SID. We present in
Table 1 a comparison of UBM(pcaDCT), UBM(BN+pcaDCT) and
DNN(pcaDCT) systems with the latter two using MVN processing
of DNN input features on the gender-pooled, core-extended trials
of the NIST SRE’12. Atrtificial and environmental noise conditions
(c3, c4, c5) are also reported. It can be observed that DNN-based
SID systems provide significant gains over UBM(pcaDCT) in non-
degraded and environmental-noise conditions (c1, c2, c¢5). In con-
trast, systems perform comparably for artificially noisy audio con-
ditions (c3, c4). An exception to this trend is the EER in re-noised
telephone speech (c4) in which UBM(pcaDCT) provided more than
20% relative gain over the DNN-based approaches.

To better analyze the effect of noise in a controlled manner, we
present in Figure 4 the non-degraded microphone, additive noise
and additive reverberation trials from the PRISM dataset. The

Fig. 4. Comparison of baseline UBM(MFCC) with DNN-based SID
systems on non-degraded, re-noised and reverberated conditions of
the PRISM dataset.

UBM(pcaDCT) performance was better than the DNN-based sys-
tems for non-degraded microphone speech. In contrast to SRE’12
results in which the opposite trend was observed, these trials include
only a single, close proximity microphone (no telephone for speaker
enrollment) which is not prevalent in the DNN training and suggests
that further robustness to channel mismatch between DNN and SID
data is needed. Three levels of reverberation (RT 0.3, 0.5, and 0.7)
are then shown to illustrate the that robustness of DNN-based sys-
tems is comparable to that of UBM(pcaDCT). Finally, the impact
of noise at levels 20dB, 15dB and 8dB SNR shows the DNN/i-
vector framework to be the most susceptible to noise at the EER
point (as observed in re-noised telephone speech in Table 1) while
the UBM(BN) system suffered a relatively small degradation. Aug-
menting BN features with pcaDCT features provided noise robust-
ness comparable to the conventional UBM system.

The results in this section demonstrated that the DNN-based SID
systems, while as robust to reverb as the conventional UBM system,
suffered degradation in the context of artificial noise. This was par-
ticularly the case for the DNN/i-vector framework in which the DNN
is incorporated at a later stage of the SID framework. These results
were based on a DNN trained using non-degraded audio. Future
work will attempt to address the issue of noise by adding re-noised
data into the DNN training as done for PLDA [20] and through use
of convolutional neural networks as in [7].

6. CONCLUSIONS

This work highlighted a microphone/telephone channel mismatch is-
sue affecting recently proposed DNN-based SID systems: DNN/i-
vector and BN feature systems. Methods to address this mismatch at
the DNN feature level were explored. MVN was shown to be most
effective in improving DNN-based SID to a level superior to a con-
ventional UBM/i-vector system for SRE’12. Further experiments
then analyzed the effect of noise and reverberation on DNN-based
SID performance. While these systems were comparable to the con-
ventional UBM system under reverberation, re-noised audio brought
about a significant degradation to the DNN/i-vector framework.
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