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ABSTRACT

The use of Restricted Boltzmann Machines (RBM) is pro-
posed in this paper as a non-linear transformation of GMM
supervectors for speaker recognition. It will be shown that the
RBM transformation will increase the discrimination power
of raw GMM supervectors for speaker recognition. The ex-
perimental results on the core test condition of the NIST
SRE 2006 corpus show that the proposed RBM supervectors
will achieve a comparable performance to i-vectors. Fur-
thermore, the combination of RBM supevectors and i-vectors
in the score level improves the performance of the i-vector
approach by more than 10% in terms of EER.

Index Terms— Speaker Recognition, Supervector, Re-
stricted Boltzmann Machine

1. INTRODUCTION

The conventional state-of-the-art method in speaker recogni-
tion is the Gaussian Mixture Model-Universal Background
Model (GMM-UBM) [1]. In this method, speaker GMM
models are adapted from the UBM using maximum a pos-
teriori (MAP) adaptation technique. The main problem of
this method is that it is very slow in the testing phase as
each frame of the speech signal should be scored separately
against both adapted GMM and UBM. Support Vector Ma-
chine (SVM) combined with GMM is another successful
method in speaker recognition [2]. In this method, the mean
vectors of the adapted GMM are concatenated to form a big-
ger vector called GMM supervector. GMM supervectors are
then modeled by the SVM classifier. Supervectors are not
only used in speaker recognition (e.g., [2][3]) but are also
used in other applications (e.g., [4][5]), which shows the
importance of these kinds of features. The most recent state-
of-the-art method is well-known as i-vector [6]. Supervectors
are transformed to the lower dimensional i-vector space using
the effective factor analysis method.

On the other hand, Restricted Boltzmann Machines
(RBM) have recently been used in audio and speech process-
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ing area (e.g., [7–10]). They were used in speaker recognition
for the first time in [11] as unsupervised feature extractors.
They were further used in [8][12] to model i-vectors and in
[13] to extract speaker factors. In [14] and [9] RBMs have
been used to extract pseudo-ivectors from acoustic features
and i-vectors, respectively. They have been also employed in
an adaptation process to model target and non-target i-vectors
discriminatively [15][16][17]. RBMs have been recently used
as a pre-training process in Deep Belief Networks (DBN) to
extract Baum-Welch statistics for supervector and i-vector
extraction [10][18] as well.

In this paper, we use RBMs as a non-linear transforma-
tion and dimension reduction stage for GMM supervectors.
The normalized version of hidden state likelihoods are con-
sidered as RBM supervectors in this paper. Before transfor-
mation, supervectors are model-normalized and whitened. It
will be shown that the RBM transformation can decrease the
dimension of supervectors while increasing their discrimina-
tion power. We will show that RBM supervectors achieve
comparable performance to i-vectors and their combination
in the score level improves the EER by more than 10%.

2. GMM SUPERVECTOR AND I-VECTOR

Supervectors are often referred to high dimensional vec-
tors combined of many smaller dimensional ones. In a
wider sense, they can be understood as any high- and fixed-
dimensional representation of an utterance. GMM supervec-
tors are (M × D)-dimensional vectors obtained by stacking
the D-dimensional mean vectors of an M -mixture adapted
GMM. Usually only mean vectors µi are adapted and, there-
fore, weights wi and covariance matrices Σi are the same
for both UBM and adapted GMM. Suppose that the UBM,
λubm, and the MAP-adapted GMM for speaker a, λa, are
represented as,

λubm =
{
wi,µ

ubm
i ,Σi

}M

i=1
, (1)

λa = {wi,µ
a
i ,Σi}Mi=1 (2)

where i is the index of the ith Gaussian mixture, and Σi is
considered diagonal. The supervector sa is then represented
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as,
sa = (µa

1 ,µ
a
2 , ...,µ

a
M )t (3)

where t refers to a transpose operation.
It is assumed that supervectors can be further decomposed

as follows [6],
sa = subm + Tω (4)

where T is the low rank total variability matrix which is
trained in an iterative process using the centralized Baum-
Welch statistics from all available speech utterances. And ω
is a low rank vector referred to as the i-vector. The cosine
similarity is an effective distance metric to compare i-vectors
when no speaker label is available for development data.

3. RBM SUPERVECTOR

Figure 1 shows the block diagram of the process of creat-
ing proposed RBM supervectors. Three main techniques are
used in our proposed approach, namely model normalization,
whitening, and non-linear transformation by RBMs. The ob-
jective of the proposed method is to transform conventional
raw GMM supervectors to lower dimensional ones while in-
creasing their discrimination power. In comparison to the
conventional i-vector technique, the first whitening block and
the RBM transformation in Fig. 1 are the main contributions
of this work.

3.1. Model Normalization

Model normalization has been used in speaker recognition
[2]. In that work, MAP adapted mean vectors are normal-
ized by their corresponding UBM weight and variance param-
eters. In section 4 we will evaluate different combinations of
UBM parameter normalization and will conclude that UBM
mean and variance normalization will achieves the best per-
formance when the cosine distance is used,

µi ← Σ
−1/2
i (µi − µubm

i ), 1 6 i 6M (5)

3.2. Whitening

A whitening transformation rotates the original data X to the
principle component space in which the rotated data compo-
nents are uncorrelated and the covariance matrix will ideally
be the identity matrix,

Xwhiten = HX (6)

H = V (D + ε)
−1/2

Vt (7)

where H is the whitening matrix, V is the matrix of eigen-
vectors, and D is the diagonal matrix of the corresponding
eigenvalues. And the small constant of ε is added to avoid
large values in practice.

Model
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Whiten
Mean
Norm

RBM

UBM H1 W/b

s s' s'' sr sr'

m
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sr''

Fig. 1: Block-diagram of the process of transformation of raw GMM
supervectors (s) to the proposed RBM supervectors (s′′r ). H1 and
H2 are whitening matrices, W and b are RBM parameters obtained
on the development data.
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Fig. 2: RBM (a) and RBM training (b).

Whitening has been used in speaker recognition in dif-
ferent ways, e.g., as a part of the baseline system in the re-
cent NIST i-vector challenge [19]. Similarly, we whiten the
model-normalized supervectors to obtain supervectors with
uncorrelated components. It will be shown in section 4 that
it plays an important role for increasing the discrimination
power of supervectors. Whitening will be used another time
in our approach when supervectors are transformed to a lower
dimensional space using RBMs.

3.3. Restricted Boltzmann Machine

RBMs are generative models composed of two fully con-
nected layers of visible and hidden stochastic units (Fig. 2a).
RBMs have been used in speaker recognition for different
purposes [8–13] [15–18]. In this paper, we use RBM as a
non-linear transform and dimension reduction stage for our
normalized supervectors. At first, RBM is trained using de-
velopment supervectors. Then the trained parameters are
used for transforming new supervectors. The inputs to the
RBM will be normalized supervectors and the outputs will
be hidden state likelihoods computed by eq. 8. Hidden state
likelihoods are not suitable as such to be considered as new
supervectors. Therefore, we first take their logarithm and
then we normalize them. It will be shown in section 4 that
mean normalization followed by whitening achieves excellent
results.

Training an RBM is based on the Contrastive Divergence
(CD) algorithm [20][21]. An approximated version of CD
algorithm is called CD1. From an algorithmic point of view,
training an RBM with CD1 where the input data is real-valued
Gaussian distributed can be summarized as follows,

• Initialize Network Parameters (W,b,a)

• CD1 Steps (Fig. 2b)

1. h = σ (b + Wv) (8)
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2. vr = a + Wth′ (9)

3. hr = σ (b + Wvr) (10)

• Update Network Parameters

1. ∆W = α (hvt − hrv
t
r) (11)

2. ∆a = α (h− hr) (12)

3. ∆b = α (v − vr) (13)

W is the network weight matrix and a and b are hidden and
visible bias vectors, respectively. Vectors v and h are re-
spectively visible and hidden unit values and vr and hr are
their reconstructed ones. The parameter α is the learning rate,
σ(x) = (1 + e−x)−1 is the sigmoid function, and h′ is a bi-
nary vector randomly sampled from h.

The parameter updating process is iterated until the algo-
rithm converges. It is possible to perform the above parameter
update after processing each training example, but it is of-
ten more efficient to divide the whole input data (batch) into
smaller size batches (minibatch) and update parameters for
each minibatch. More details can be found in [20][21][22].

4. EXPERIMENTAL RESULTS

4.1. Baseline and Database

Features used in the experiments are Frequency Filtering (FF)
features [23] extracted every 10 ms using a 30 ms Hamming
window. The number of static FF features is 16 and together
with delta FF and delta energy, they make 33-dimensional
feature vectors. Before feature extraction, speech signals are
subjected to an energy-based silence removal process and no
feature post-processing is carried out.

The whole core test condition of the NIST 2006 SRE eval-
uation [24] is used in all experiments. It includes 816 target
models and 51,068 trials. Signals have around two minutes of
speech. Performance is evaluated using the Equal Error Rate
(EER) and the minimum Decision Cost Function (minDCF)
calculated using CM = 10, CFA = 1 and PT = 0.01.

The performance of the proposed approach is compared
with the i-vector baseline system in which i-vectors are com-
pared using cosine distance. The gender-independent UBM
is represented as a diagonal covariance, 512-component
GMM. To create supervectors, GMMs are adapted from
the UBM by the relevance factor of 16 and 5 EM iterations.
Only mean vectors are adapted. ALIZE open source soft-
ware [25] is used to extract 400-dimensional i-vectors and
(512 × 33 = 16,896) - dimensional supervectors.

The development data includes 6,125 speech files col-
lected from NIST 2004 and 2005 SRE corpora. It is worth
noting that in the case of NIST 2005 only the speech files of
those speakers which do not appear in NIST 2006 database
are used. The same development data is used to train UBM,
RBM, T matrix and whitening matrices.

Table 1: Comparison of different kinds of supervector model nor-
malization for Euclidean and Cosine distances. Results are obtained
on the core test condition of NIST SRE 2006 corpus. µubm

i are
UBM mean vectors, wi and Σi are respectively weights and diago-
nal covariance matrices shared between adapted GMMs and UBM.

Normalization
Distance

Euclidean Cosine
EER(%) DCF EER(%) DCF

µi ← µi 31.09 0.0973 30.51 0.0976
µi ← Σ

−1/2
i µi 30.52 0.0979 30.23 0.0980

µi ←
√
wiΣ

−1/2
i µi 29.79 0.0971 29.47 0.0972

µi ← (µi − µubm
i ) 31.09 0.0973 19.19 0.0729

µi ← Σ
−1/2
i (µi − µubm

i ) 30.52 0.0979 17.69 0.0677
µi ←

√
wiΣ

−1/2
i (µi − µubm

i ) 29.79 0.0971 17.82 0.0679

4.2. Results

Table 1 shows the results obtained with different kinds of su-
pervector model normalization for both distance metrics of
Euclidean and Cosine. The normalization is carried out by
using the UBM mean vectorsµubm

i , the weightswi, and diag-
onal covariance matrices Σi shared between adapted GMMs
and UBM. As it was mentioned in section 2, only mean adap-
tation is carried out. Therefore, the weight and covariance
matrices will be the same for UBM and adapted GMMs. The
first row of the table compares the two distance metrics when
no normalization is considered. As it can be seen, there is
only a small difference between these metrics in this case.
The second row shows that the variance normalization helps
a little bit in both cases. The third row indicates that adding
model weights to the normalization improves the results a lit-
tle bit more. As it was expected, mean normalization does not
affect the results in the Euclidean case. However, a big im-
provement can be observed when mean normalized supervec-
tors are compared using the cosine distance. The variance and
mean normalization together show even better performance
than using only mean normalization. The last row in the table
shows that adding the weights to the normalization process
does not help more. It can be concluded from the table 1
that UBM mean and variance normalization increases the dis-
crimination power of supervectors to a great extent when the
cosine distance is employed for the similarity measurement.

The resulting supervectors are further whitened to mini-
mize the correlation among supervector components. As it
was mentioned in section 3.2, a regularization factor ε is con-
sidered in practice to avoid numerical instability in whitening.
Fig. 3 shows the variability of EER in terms of this factor. As
it can be seen in this figure, there is a good value between 0
and 1 for this parameter which it is equivalent to 0.2 in our
application. The minDCF shows also the same behavior.

As it was mentioned in sec. 3.3, normalized supervec-
tors are further transformed by RBM to a lower dimensional
space. The objective of this transform is to decrease the di-
mension of supervectors while increasing their discrimination
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Fig. 3: Setting regularization factor in whitening (results are ob-
tained on the UBM Mean-Variance (MV) normalized of raw GMM
supervectors).
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Fig. 4: Comparison of PCA and RBM dimension reduction tech-
niques for normalized supervectors in terms of EER.
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Fig. 5: Comparison of PCA and RBM dimension reduction tech-
niques for normalized supervectors in terms of minDCF.

power. Figures 4 and 5 show the efficiency of RBM dimen-
sion reduction technique for different hidden layer (or super-
vector) sizes and compare them with the conventional PCA
method. As it was mentioned in sec. 3.3, the logarithm of hid-
den state likelihoods are mean normalized and then whitened
to be suitable as supervectors. As it can be seen in these fig-
ures, RBM works similar to PCA for dimensions as low as
1,000 whereas it becomes more efficient than PCA by increas-
ing the dimension of transformed supervectors. The learning
rate (α), the number of epochs (NofE), and the minibatch size
are set respectively to 0.001, 40, and 100 for RBM training.
A fixed momentum of 0.9 and a weight decay of 2×10−4 are
also considered.

Table 2 summarizes the effectiveness of each technique
used in Fig. 1. As it can be seen in this table, UBM Mean-
Variance (MV) normalization can increase the discrimination
power of supervectors by 42% in comparison to the raw su-
pervectors. Moreover, the whitening step will decrease the

Table 2: The effect of using each technique in the proposed RBM
supervector approach of Fig. 1. MV and M Norms stand for Mean-
Variance and Mean Normalization, respectively. RBM is used with
the hidden layer of 8,000 units. Results are obtained on the core test
condition of NIST SRE 2006 corpus.

Technique EER(%) minDCF
Supervector + Cosine 30.51 0.0976
Supervector + UBM MV Norm + Cosine 17.69 0.0677
Supervector + UBM MV Norm +
Whiten + Cosine 8.00 0.0346
Supervector + UBM MV Norm + Whiten +
RBM + M Norm + Whiten + Cosine 7.58 0.0346

Table 3: Comparing the performance of the proposed RBM super-
vector with the i-vector. RBM is used with the hidden layer of 8,000
units. Results are obtained on the core test condition of NIST SRE
2006 corpus.

Technique EER(%) minDCF
i-Vector + Cosine 7.18 0.0324
RBM Supervector + Cosine 7.58 0.0346
Combination 6.45 0.0314

EER by 55% more. And finally, RBM transform and normal-
ization will decrease the dimension of supervectors by more
than an a half while increasing the performance.

Table 3 compares the best result obtained by the proposed
supervector with the successful i-vector. In both cases the
similarity between identity vectors is measured simply using
cosine distance. As it can be seen in this table, the perfor-
mance of the proposed supervector is comparable with the
successful i-vector. Moreover, if these two techniques are
combined in the score level, more than 10% improvement
will be observed over the baseline i-vector approach. This
indicates that the proposed identity supervector gives comple-
mentary information to the conventional i-vector. The combi-
nation is carried out simply by summing the mean and vari-
ance normalized scores.

5. CONCLUSION

New lower dimensional supervectors based on Restricted
Boltzmann Machines (RBM) are presented in this paper for
speaker recognition. Raw GMM supervectors are model-
normalized and whitened. Then the resulting supervectors
are transformed by RBMs. We have shown that RBM trans-
formation decreases the dimension of supervectors while
increases their discrimination power. The experimental re-
sults on the core test condition of the NIST SRE 2006 corpus
show that the proposed supervectors achieve a comparable
performance to i-vectors. Moreover, the combination of the
proposed supevectors and i-vectors in the score level im-
proves the performance of the i-vector approach by more
than 10% in terms of EER.
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