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ABSTRACT 

 

In this paper, we propose a novel algorithm which uses 

simple lowpass filtering as pre-processing for detection of 

epochs. Lowpass filtering with an appropriate cut-off 

frequency removes the effect of vocal tract characteristics as 

formants lie in relatively higher frequency regions. The 

method is evaluated on entire CMU-ARCTIC database 

consisting of the electroglottograph (EGG) signals. Noise 

robustness of the proposed algorithm is evaluated in the 

presence of additive white noise with various SNR levels. 

Experimental results show that lowpass filtering make the 

proposed algorithm noise robust. The method gives 

comparable or better results with the two state-of-the-art 

methods, viz., ZFR and SEDREAMS (which require apriori 

knowledge of the pitch period). In addition, the proposed 

method shows an improvement in identification accuracy. 

 

Index Terms— Epoch extraction, lowpass filtering, 

glottal closure instant, group delay. 

 

1. INTRODUCTION 

 

An epoch is an instant of time marked by distinctive features 

called as events. In the context of speech signal, epoch is 

defined as the ‘instant’ of significant excitation of the vocal 

tract system which occurs during glottal closure instant 

(GCI) [1]. Estimation of epochs find its applications in 

many areas like prosody modification, text-to-speech (TTS) 

synthesis, speaker recognition, emotion recognition and 

voice conversion. Negative peaks in the derivative of 

electroglottograph (EGG) are very close to the epoch 

locations. EGG signal is the measure of glottal airflow 

velocity. However, recording of EGG requires tedious lab 

setup. Thus, many signal processing techniques have been 

emerged for deriving epochs directly from pre-processed 

speech signal [2].   

 Many methods use linear predictability of speech signal 

as the basis for epoch estimation. Because of sudden burst 

of energy at GCI compared to its neighbourhood, it becomes 

difficult to predict speech signal around GCI. Thus, error 

signal obtained in Linear Prediction (LP) analysis, called as 

Linear Prediction Residual (LPR) supposed to contain 

information related to epochs. Hence, the large value of 

error refers to epoch location [3]. Ideally, LPR should 

consists of impulses near GCIs. However, there are samples 

of random polarity around epochs. Several studies use 

Hilbert envelope (HE) of the error signal for unambiguous 

detection of epochs [4]- [5]. An alternative to HE of LPR is 

proposed in [1] which is based on the global phase 

characteristics of minimum phase signals. The method uses 

positive zero-crossings of phase slope function to identify 

epochs. The phase slope function is calculated by taking 

average slope of the unwrapped phase of the short-time 

Fourier transform (STFT) of LPR as a function of time. 

However, this method gives rise to false alarms [6]. 

Therefore, the Dynamic Programming Phase Slope 

Algorithm (DYPSA) uses Dynamic Programming technique 

to select GCIs from a set of candidates to reduce false 

alarms [6]. Except group-delay based methods, most of the 

methods explained above employ block processing, which 

result in ambiguous epoch detections. In particular, the 

methods which rely on LPR derived by inverse filtering 

need selection of parameters like order of LP analysis, 

length of window and are dependent on energy of error 

signal. Zero Frequency Resonator (ZFR)-based method uses 

the impulsive nature of excitation for epoch extraction [7]. 

As discontinuity in the time-domain affects all frequencies, 

the output of ZFR should have the information of the 

discontinuities in the speech signal due to impulse-like 

excitation. The advantage of choosing zero-frequency (0- 

Hz) is that the vocal tract system has resonances around 

much higher frequencies than at the zero-frequency. 

Recently, Speech Event Detection using the Residual 

Excitation And a Mean-based Signal (SEDREAMS) which 

finds rough locations of epochs from mean-based signal and 

then refines them through peaks of LPR, is proposed [8]. 

However, both ZFR and SEDREAMS need mean average 

pitch period of a speaker apriori. Very recently, epoch 

extraction using Dynamic Plosion Index (DPI) from pre-

processed signal is reported in [9]. Half-wave rectified and 

negated integrated linear prediction residual (HWILPR) or 

Hilbert transform of ILPR (HTILPR) is used as the pre-

processed signal. This method needs to initialize first epoch 

manually for every utterance. In addition, proper source 

(i.e., either HWILPR or HTILPR) needs to be identified for 

every utterance. 
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 In this paper, we propose a novel method which passes 

the positive clipped and inverted speech signal through a 

lowpass filter for epoch extraction. Thus, the proposed 

method does not depend on LPR or pre-processing of LPR  

The details of the proposed method are discussed in next 

session. 

 

2. DETAILS OF PROPOSED METHOD 

 

2.1. Pre-processing 

 

The voiced speech of a typical adult male have a 

fundamental frequency (i.e., Fo) from 85-180 Hz and that of 

a typical adult female from 165-255 Hz [10]. If speech 

signal is passed through a lowpass filter (with cut-off 

frequency    ) 250 Hz for female voice and 180 Hz for 

male voice), the filtered signal should contain pitch 

information. Thus, filtered signal can be approximated as 

sinusoidal signal with local period close to a pitch period. 

This observation forms basis of the proposed method. 

Before lowpass filtering, the speech signal was positive 

clipped. From Figure 1, we observe that, positive clipping 

just introduces DC component and does not affect frequency 

distribution of the signal. In particular, from Fourier series 

representation, we verify that the DC coefficient of a 

sinusoid  is 0 whereas that of clipped sinusoid is 1/π and 

fundamental frequency of original sinusoidal is retained in 

the clipped sinusoid. 

               

 
Figure 1: (a) Narrowband spectrogram of a speech signal, (b) 

narrowband spectrogram of positive clipped speech signal. Dotted 

circle indicates spectral energy density around 0-Hz.  

 

Thus, proposed algorithm pre-processes speech signal as 

follows : 

 Positive portion of speech signal      is clipped and 

then it is inverted.  

         
                  

                
  

 Negated positive clipped signal       is passed through 

the 3
rd

 order Butterworth IIR lowpass filter with cut-off 

frequency    Hz.      is the lowpass filtered signal. 

Lowpass filtering introduces delay in output signal. The 

frequency content of      will be roughly in the range of 0-

   Hz. Thus, it is assumed that the group of frequencies 

present in       suffer from constant delay equal to the 

group delay of filter at   . In addition, Figure 2 depicts that 

in frequency range 0-   Hz, the filter almost exhibits linear 

phase response.  

 Thus, calculate the group delay       of filter at cut-off 

frequency    and then, 

 adjust delay introduced by filtering, i.e., 
 

                
 

 

  
Figure 2: Phase response of filter for range (a) 0-16 kHz ,(b) 0-300 Hz. 

Figure 3 shows a speech segment and  output of 

lowpass filter when positive clipped and then negated 

speech segment passed through it. It can be observed that 

negative peaks in DEGG coincide with peaks of delay 

adjusted lowpass filtered output (solid trace). Therefore, we 

have experimentally observed that, after adjusting delay 

introduced by lowpass filter, peaks in the filtered signal 

correspond closely to the GCIs. After this, epochs are 

detected by peak picking algorithm explained in next sub-

section. 

 

Figure 3: (a) Original speech segment, (b) positive clipped and 

negated speech segment (c) dashed trace : lowpass filtered output, 

solid trace : lowpass filtered output after adjusting delay, bottom 

trace: DEGG signal, negative peaks of which are taken as reference 

epochs. 
 

2.2. Selection of GCIs by peak picking method 
 

GCIs are located from peaks in filtered speech as follows : 

 The peaks (Ei) in lowpass filtered speech signal with 

significant peak-valley difference, are selected which 

correspond to epoch locations. 

 The peaks with small peak-valley difference were 

removed by applying appropriate threshold T (threshold 

T  is selected experimentally to be 1/12
th
 of the average 

peak-valley difference in entire filtered speech signal). 

 Spurious small peaks seem to appear between two major 

peaks in some filtered speech signals. Hence, if the peak 
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is 0.7 times less than either preceding (Ep) or following 

epoch (Ef), then it is considered spurious and is removed. 

Figure 4 illustrates flowchart of the proposed algorithm 

for epoch estimation. Figure 5(b) shows the lowpass filtered 

speech consisting of few peaks with very small peak-valley 

difference. These peaks give rise to false alarms. Figure 5(d) 

shows the detected epochs with reduced false alarms. 

                                                                

                                                                    

   

 

 

 

 

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4: Illustration of the proposed algorithm for GCI estimation. 

 

 
Figure 5: Selection of GCI candidates from peaks of filtered signal. 

(a) original speech signal, (b) positive clipped and negated speech 

signal (c) lowpass filtered output after adjusting delay introduced 

by the filter, (d) detected candidates before peak picking, (e) 

detected candidates after refinement of spurious peaks. 

 

 

3. EXPERIMENTAL RESULTS 
 

3.1. Experimental Setup 
 

CMU-ARCTIC database was used for evaluation of 

proposed method [11]. The database consists of 3377 

phonetically balanced utterances of 3 speakers: SLT (US 

female-1132), JMK (Canadian male-1114), and BDL (US 

male-1131), digitized at 32 kHz along with EGG signals. 

After adjusting delay of 0.7 ms, differenced EGG (DEGG)  

is used as ground truth [7]. The maximum negative peaks in 

DEGG are taken as reference epoch locations. The method 

has been evaluated on voiced segments only. Voiced-

unvoiced (V-UV) decision can be made by using threshold 

of 1/6 times peak-to-peak value of DEGG signal [12]. Here, 

V-UV decision is made by applying threshold of 1/9
th

 of 

maximum negative value of DEGG signal. This is the worst 

case for threshold to capture low energy voiced regions [9]. 

Performance measures are as follows [13] : 

 Identification Rate (IDR) : the percentage of glottal 

cycles for which exactly 1 GCI is detected; 

 Miss Rate (MR) : the percentage of glottal cycles for 

which no GCI is detected;  

 False Alarm Rate (FA) : the percentage of glottal 

cycles for which more than 1 GCI is detected; 

The glottal cycles, for which exactly 1 GCI gets 

detected, the timing error between detected GCI and 

reference GCI is found. 

 Identification Accuracy (IDA) : the standard deviation 

of the timing error vector. Small value of IDA 

corresponds to higher identification rate.  

 Accuracy to ± 0.25 ms : The percentage of detections 

for which the timing error is less than ± 0.25 ms. 
 

3.2. Performance on clean speech 
 

Table 1 shows the performance of ZFR, SEDREAMS and 

the proposed method on CMU-ARCTIC database.  
 

Table 1: Comparison of results over CMU-ARCTIC database 

Speaker Method 
IDR 

(%) 

MR 

(%) 

FA 

(%) 

IDA 

(ms) 

Acc. to 
± 0.25 

ms(%) 

BDL 

Proposed* 98.43 0.98 0.59 0.34 63.27 

  Proposed-WC 91.89 0.28 7.83 0.35 60.83 

Proposed-NC 84.44 0.76 14.8 0.75 34.96 

ZFR 96.62 0.09 3.29 0.38 74.76 

SEDREAMS 98.44 0.41 1.15 0.42 81.81 

JMK 

Proposed* 97.54 2.18 0.28 0.56 47.62 

  Proposed-WC 98.14 1.34 0.52 0.59 45.06 

Proposed-NC 96.70 1.26 2.04 0.56 36.24 

ZFR 99.04 0.09 0.87 0.66 34.72 

SEDREAMS 98.97 0.61 0.42 0.65 65.59 

SLT 

Proposed* 98.93 0.44 0.64 0.28 69.12 

  Proposed-WC 96.66 0.19 3.15 0.38 60.51 

Proposed-NC 95.77 0.67 3.56 0.66 25.56 

ZFR 99.16 0.03 0.81 0.35 78.67 

SEDREAMS 99.45 0.07 0.48 0.32 72.99 

* Proposed method with positive clipping.
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Table 2: Comparison of epoch extraction techniques for additive white noise on CMU-ARCTIC database at various SNR levels.
 Proposed Proposed-WC ZFR SEDREAMS 

SNR(dB) -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 

IDR (%) 98.29 98.30 98.30 98.30 95.50 95.50 95.50 95.52 98.27 98.26 98.26 98.25 98.97 98.93 98.91 98.94 

MR (%) 1.17 1.17 1.18. 1.19 0.59 0.59 0.60 0.60 0.07 0.07 0.07 0.07 0.35 0.37 0.38 0.37 

FA (%) 0.54 0.53 0.52 0.51 3.90 3.91 3.90 3.88 1.66 1.67 1.67 1.68 0.68 0.70 0.70 0.69 

IDA (%) 0.39 0.39 0.39 0.39 0.44 0.44 0.44 0.44 0.48 0.48 0.49 0.5 0.50 0.49 0.48 0.47 

Acc.to ±0.25 
ms (%) 

59.98 59.98 60 60 55.46 55.46 55.47 55.47 62.17 62.21 62.20 62.14 66.36 69.15 71.16 72.78 

 

We compare our results with ZFR and SEDREAMS as both 

methods perform better than HE-based, group delay-based 

methods and DYPSA [7], [8].  We investigate importance of 

positive clipping by evaluating performance of the proposed 

method without positive clipping (Proposed-WC) and with 

negative clipping (Proposed-NC). IDR and FA for the 

proposed method are almost comparable with that of ZFR 

and SEDREAMS. The selection of proper threshold may 

help to improve MR. The proposed method gives better IDA 

over these two recently proposed methods. The advantage of 

proposed method over other two is its simplicity. It does not 

require prior mean pitch period information as required in 

existing ZFR and SEDREAMS methods. 

 

3.3. Performance on signal degradation conditions 

 

The method has been tested and compared on noisy speech 

signals. For this purpose, white noise was added to the 

speech signals from CMU-ARCTIC database at different 

Signal-to-Noise Ratio (SNR) levels. The performance 

measures were averaged over all 3 speakers available in the 

database. The SNR is varied from -10 dB to 5 dB in steps of  

5 dB. The white noise was taken from NOISEX-92 [14]. 

database. Table 2 displays comparison of the proposed 

method over ZFR and SEDREAMS at various SNR levels. 

It is observed that the proposed method performs well in 

terms of  FA and IDA and gives comparable results in terms 

of IDR over other two methods under severe degraded 

conditions. 

 

 
 

 

Figure 6: Illustration of proposed method for voiced fricative. (a) a 

speech segment with a voiced fricative /z/, (b) top trace- estimated 

epoch locations, bottom trace- DEGG signal.  

 

3.4. Analysis of proposed method in voiced fricatives and 

low voicing regions 

 

The proposed method detects epochs in low voicing regions  

as well as voiced fricatives. In Figure 6, a segment of speech 

with a vowel followed by a voiced fricative followed by a 

vowel, is shown. It is observed that, epochs in the voiced 

fricative are detected properly. Thus, it is clear that 

algorithm detects epochs in all voiced sounds. Figure 7 

depicts the performance in low voicing regions. It means 

that the proposed method does not depend on energy of 

vowel and epochs in low voicing regions can be detected. 

 
Figure 7: Illustration of proposed method for low voicing region. 

(a) a speech segment with low voicing region, (b) top trace- 

estimated epoch locations, bottom trace- DEGG signal. 

 

4. SUMMARY AND CONCLUSIONS 

 

A simple method for epoch extraction has been proposed in 

this paper. Performance of the method has been reported 

comparable or better with other existing techniques. Future 

work will be emphasized on reducing MR by selection of 

proper threshold. Reduction in MR ultimately will help to 

improve other performance measures. Simple lowpass 

filtering makes the proposed method immune to severe 

degraded conditions. The peak-valley difference of lowpass 

filtered output may be extended to characterize strength of 

excitation (SOE) in a glottal cycle which authors would like 

to investigate in future. 
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