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ABSTRACT 
This paper presents a technique in which feature vectors are 
mapped onto ordinal ranges of clinical depression scores using 
weighted pairwise Gaussians. The position of a test vector with 
respect to these partitions is used to perform depression score 
prediction.  Results found on a set of spectral and formant based 
speech characteristics indicate the potential of this technique for 
performing depression score prediction. Key results on the AVEC 
2013 development set indicate that the inclusion of weights and 
Bayesian adaptation improves system performance by 16.5% - 
18.5% when compared to using an unweighted non-adapted 
system. Fusing results from Bayesian adapted models 
corresponding to different feature spaces offers up to 8% further 
improvement. Further, fusion consistently improves performance 
on both the AVEC 2013 development and test set, in contrast to 
conventional regressor fusion.  

Index Terms— Depression, Score Level Prediction, 
Gaussian, Bayesian Adaptation, Fusion 

1. INTRODUCTION 
Clinical depression is the world’s most commonly occurring 
mental illness [1]. Symptoms include, but are not limited to; 
reduced cognitive ability, continuous negative affect, increased 
fatigue and psychomotor retardation. This heterogeneous clinical 
profile introduces complexities when trying to assign a depressed 
individual into a clinical categorical grouping which relates to their 
level of depression [2]. As a result of these diagnostic 
complexities, research into the use of behavioural signals – such as 
speech – as a diagnostic aid for depression is gaining in popularity 
[3]–[5]. 

Currently clinicians use a variety of different depression 
assessment methods, such as the Beck Depression Inventory (BDI 
[6]) – a questionnaire in which the severity of 21 symptoms 
commonly observed in depression are self-rated then summed 
together to produce a score which relates to depression severity. 
The reliability of self-reported assessment such as the BDI is 
compromised by patient overfamiliarity and subjectivity when 
rating the severity of their symptoms [7]. 

Both the heterogeneity of depression symptoms [8] and issues 
relating to reliability mean that a severity score given through 
multi component depression assessments such as the BDI can be 
regarded as ordinal rather than numerical [9]. Often the severity 
score is used for ease of clinical categorization rather than as a 
reliable numerical severity measure. A patient who has taken the 
BDI is assigned to one of four clinical categories depending on 
their total score; minimal (0–13), mild (14–19), moderate (20–28), 
and severe (29–63).  

The recent Audio Visual Emotion Challenge (AVEC 2013, 
[10]) required participants to predict a single BDI score using 
multimodal signal processing techniques from a given multimedia 
file. Given the ordinal nature of BDI scores, it seems reasonable to 
assume that direct regression on feature space coefficients would 
be unsuitable – there are no guarantees of correlation, in the 
parametric sense, between behaviour feature space coefficients and 
BDI scores. 

A potential solution to increase the performance of the 
predicted depression scores is to assume that feature vectors 
relating to adjacent BDI scores do not differ greatly from each 
other, whilst feature vectors for scores separated by a considerable 
margin are distinct, and create a “staircase” of feature space 
probability density functions with each “step” of the staircase 
representing a different range of BDI scores [5]. The information 
from a series of estimates of how far from each “step” the test 
point lies can then be used as a the basis for regression, rather than 
raw features or model-based features like supervectors. 

2. RELATION TO PRIOR WORK 
This paper explores and extends the Gaussian Staircase 
Regression (GSR) paradigm proposed in [5], in combination with 
spectral and formant features, for performing depression score 
level prediction. In this paradigm, pairs of Gaussians are used to 
partition the feature space into regions corresponding to predefined 
BDI ranges. A test vector derived from likelihood ratios based on 
these pairwise partitions is then used to obtain a final score using a 
suitable regression model.  

Spectral and formant speech features have shown consistently 
strong performance when used as objective marker of depression 
[4], [5], [11]–[15]. This consistency is due to depression altering 
speech motor control, in particular vocal tract and articulatory 
coordination [5], [14]. As results published in AVEC 2013 
Depression Recognition dataset [10] confirm the suitability of 
spectral and formant features for predicting a speaker’s level of 
depression [4], [5], [14], we will  use similar features in this paper. 
Although the Vocal Tract Correlation (VTC) features used in [5] 
are interesting, in this work we specifically wanted to understand 
the benefits of both GSR and our proposed system on a more 
conventional set of speech features. 

An opportunity offered by expanding the GSR technique is 
feature fusion. Successful regression fusion needs an independent 
set of predictors to avoid the multicollinearity problem, however, 
as all learned models are attempting to perform the same prediction 
task, prediction scores from multiple back-ends are inherently 
correlated [16]. Therefore if GSR likelihood values are less 
correlated with BDI scores than predictor outputs, advantages may 
be found in fusion in the likelihood domain. Fortunately, fusion in 
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the likelihood domain is well-studied in the speech classification 
literature, e.g. [17]–[19].  

The aim of this paper is to understand the benefits of GSR 
(Section 3), our proposed weighted GSR system (Section 4) and 
both likelihood fusion and predictor fusion (Section 5) when 
predicting a speaker’s level of depression. In achieving this aim we  
present a series of prediction tests (Section 7) performed under the 
AVEC 2013 test conditions [10]. 

3. GAUSSIAN STAIRCASE REGRESSION 
The GSR approach uses an ensemble of pairs of Gaussians to 
divide features vectors along the BDI scale in a staircase fashion 
[5]. The set of Gaussians from the lower part of the scale, 
{𝐺𝑖

𝐿}
𝑖=1,⋯,𝑁

, are referred to as the Low Gaussian Staircase and the 
set of Gaussians from the higher part of the scale, {𝐺𝑖

𝐻}
𝑖=1,⋯,𝑁

, are 
referred to as the High Gaussian Staircase, where 𝑁 is the total 
number of Gaussian pairs (Figure 1). At each ‘step’ the test 
statistic is the log mean likelihood ratio (LMLR) of the low 
Gaussian 𝐺𝑖

𝐿 to the high Gaussian 𝐺𝑖
𝐻. Given a set of vectors; 

𝑿 =  {𝒙1 ⋯ 𝒙𝑇} the LMLR for the i-th step is given by: 

𝐿𝑀𝐿𝑅𝑖 = 𝑙𝑜𝑔 {

1
𝑇

∑ 𝑃(𝒙𝑇|𝐺𝑖
𝐿)𝑇

𝑡=1

1
𝑇

∑ 𝑃(𝒙𝑇|𝐺𝑖
𝐻)𝑇

𝑡=1

} (1) 

 
Figure 1:  A five step Gaussian Staircase. The black partitions create 
the Low Gaussian Staircase and the grey partitions create the High 

Gaussian Staircase. Figure adapted from [5]. 

The training of the GSR system involves three steps (Figure 
2). First a pair of low and high Background Gaussian Staircases 
(BGS) are created, using specific predefined partitions of training 
dataset, by training a pair of Gaussians per step.  

The second step of the GSR training is to adapt the means of 
the BGS to form a file-specific GSR for each file in the training 
data set. This adaptation attempts to account for differing speech 
characteristics between files in the training set which otherwise 
might limit overall accuracy. Given a set of training vectors; 
𝑿 =  {𝒙1 ⋯ 𝒙𝑇}, the mean of each Gaussian is updated one frame 
at a time 

�̂�𝑖
𝑐 = (1 − 𝛼𝑚

𝑐 )𝝁𝑖
𝑐 +  𝛼𝑚

𝑐 𝒙𝑡 (2) 
where 𝝁 denotes the mean being adapted, �̂� the updated mean, c  
{L, H} denotes the low and high GSRs, i =1,…,N and 𝛼𝑚

𝑐  the 
staircase specific adaptation coefficient for the m-th file. Note: as 
the adaption methodology is not presented in [5] we tested a series 
of non-Bayesian adaptation methods, and (2) gave the most 
consistent performance. 

Each 𝛼𝑚
𝑐  is set on a per-speaker basis: 

 𝛼𝑚
𝑐 =

𝑛

0.5 + 𝑛
 (3) 

where 𝑛 is the total number of frames the speaker of the m-th file 
has contributed to staircase c [5]. Note, for some subjects the 
AVEC 2013 dataset contains multiple files with their speech at 
different levels of depression therefore, staircase c could contain 
multiple files from the same subject. 

The final training step is to calculate test statistics for each file 
in the training set using each file’s adapted models, and use the 
resulting test statistics and corresponding BDI score to train a 
regression model. To predict the BDI score for a given test file, the 
same mean adaptation procedure is used before calculating the 
mean test statistic and predicting the BDI using the regression 
model: 

�̃� = 𝑓(𝑽, 𝜷) (4) 
where 𝑽 = [𝐿𝑀𝐿𝑅1 … . 𝐿𝑀𝐿𝑅𝑁]𝑇 is a vector of LMLR’s obtained 
from each step, 𝜷 the estimated regression parameters and �̃� the 
predicted BDI scores.  

4. WEIGHTED GAUSSIAN STAIRCASE REGRESSION 
This paper expands on the GSR approach by the inclusion of 
weighting parameters for the individual Gaussians and the use of 
speaker specific parameter adaptations similar to GMM-MAP 
adaptation [20]. The inclusion of weights in particular may be 
significant since the BDI scores present in the AVEC 2013 dataset 
– training and development partitions – are skewed toward lower 
BDI scores [4]. 

When forming the low and high BGS for the proposed 
Weighted Gaussian Staircase Regression (WGSR) a weight 
parameter, 𝜔𝑖

𝑐, is combined with each Gaussian which is 
proportional to the percentage of the overall data used to train that 
Gaussian compared to the overall amount of data that went into 
training the set – low or high - that the Gaussian is an element of. 
The i-th WGSR test statistic is the weighted log mean likelihood 
ratio (wLMLR) of the low Gaussian 𝐺𝑖

𝐿 to the high Gaussian 𝐺𝑖
𝐻: 

𝑤𝐿𝑀𝐿𝑅𝑖 = 𝑙𝑜𝑔 {
�̂�𝑖

𝐿 1
𝑇

∑ 𝑃(𝒙𝑡|𝐺𝑖
𝐿)𝑇

𝑡=1

�̂�𝑖
𝐻 1

𝑇
∑ 𝑃(𝒙𝑡|𝐺𝑖

𝐻)𝑇
𝑡=1

} (5) 

where 𝜔𝑖
𝐶 denotes the i-th weight parameter. 

When forming the individual WGSR for each file, the means 
and weights of each set of Gaussians are updated to better match 
the target file by an amount dependent on the posterior probability 
of step 𝑖. Given an individual BGS Low or High Staircase and a set 
of adaptation vectors 𝑿 =  {𝒙1 ⋯ 𝒙𝑇}, the posterior probability of 
each step given each frame in 𝑿 is calculated by: 

𝑃(𝐺𝑖
𝑐|𝒙𝑡) =  

⍵𝑖
c𝒩(𝒙𝑡|𝝁𝒊

𝒄, 𝚺𝒊
𝐜 )

∑ ⍵𝑗
c𝒩(𝒙𝑡|𝝁𝒋

𝒄, 𝚺𝒊
𝐜)𝑁

𝑗=1

 (6) 

where 𝐺𝑖
𝑐  represents an individual Gaussian and 𝝁𝒊

𝒄, 𝚺𝒊
𝐜 and ⍵𝑖

c 
denote that Gaussian’s mean vector, covariance matrix and 
weighting coefficient respectively. 

The means and weights are then updated using: 

�̂�𝑖
𝑐 = (1 − 𝛼𝑚

𝑐 )𝝁𝑖
𝑐 + 𝛼𝑚

𝑐 [
1

𝜁𝑖
∑ 𝑃(𝐺𝑖

𝑐|𝒙𝑡)𝒙𝑡

𝑇

𝑡=1

] (7) 

�̂�𝑖
𝑐 = [(1 − 𝛼𝑚

𝑐 )𝜔𝑖
𝑐 + 𝛼𝑚

𝑐
𝜁𝑖

𝑇
] 𝜑 (8) 
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where 𝝁 and 𝜔 denote the mean and weight being adapted, �̂� and 
�̂� the updated mean and weight, 𝛼𝑚

𝑐  is given by (3), 𝜑 is a scaling 
factor to ensure weighting components of each staircase sum to 
unity and 𝜁𝑖 is the weight statistic given by: 

𝜁𝑖 =
1

𝑇
∑ 𝑃(𝐺𝑖

𝑐|𝒙𝑡)

𝑇

𝑡=1

 (9) 

Note, whilst it is also possible to update the covariance 
matrices, this was not done for the results presented in this paper. 

5. LIKELIHOOD AND PREDICTION FUSION 
Three separate fusion methods are trialed in this paper. The first is 
fusion in the likelihood domain (LHD), in which the set of 
(w)LMLR’s obtained from different feature spaces and a single 
regression model is trained to operate on the concatenated 
(w)LMLR vector (Figure 2). 

We also trial conventional regression fusion, in which an 
overall prediction is formed through the weighted sum of different 
regressor outputs: 

�̃� =  ∑ 𝛿𝑘

𝐾

𝑘=1

𝑓𝑘(𝑽𝒌, 𝜷𝒌) (10) 

where �̃� are the predicted BDI scores, 𝑓𝑘 the prediction from 
the k-th regression model and  𝛿𝑘 the weight of that prediction to Y. 
Two methods of regression model fusion are trialed; Basic 
Ensemble Method (BEM) in which all predictions are given equal 
weight and Linear Regression (Lin Reg.) in which the 𝛿’s are 
estimated via least square analysis. For complete details of either 
method see [16]. 

 
Figure 2: Block diagram showing the training and testing phases of a 

Gaussian Staircase Regression System. Also shown in grey is likelihood 
domain fusion, in which different sets of (w)LMLR’s are concatenated 

together before regression. 

6. EXPERIMENTAL SETTINGS 
The AVEC 2013 dataset consists of 150 files with a mean file 
length of 14 min 52secs, divided into training, development and 

testing partitions each of 50 files (note: unless stated all results are 
reported on the development set). All files are labelled with a BDI 
score ranging from 0-45. All prediction results are reported in 
terms of the prediction Root Mean Squared Error (RMSE). 

Four different feature spaces are used: Mel Frequency 
Cepstral Coefficients (MFCC’s), MFCC Shifted Delta Coefficients 
(SDC), Formants (FMT) and Spectral Centroid Frequencies 
(SCF). MFCC’s and FMT’s were extracted using the openSMILE 
toolkit [21]. Thirteen MFCC’s, including C0, were extracted and 
appended with Δ and ΔΔ coefficients. Eighteen formant features 
were used, being the first three formant frequency and bandwidths 
appended with Δ and ΔΔ coefficients. The SDC’s were extracted 
with parameters N-d-p-k equal to 13-1-3-7 [22]. SCF is a measure 
of the average weighted frequency for the k-th sub-band, where the 
weights are the normalized energy [23]. Twenty SCF’s were 
extracted and appended with Δ and ΔΔ coefficients using a mel-
scale Gabor filterbank as per [23]. Only voiced frames were used 
in the modeling, determined using openSMILE’s voicing 
probability function. 

Unless otherwise stated, the BGS was formed using the entire 
AVEC 2013 training partition. As in [5], N = 5 Gaussians were 
estimated per staircase with the Low Class partitions at each step  
being 0-4, 0-11, 0-18, 0-32 and 0-39 and High Class partitions at 
each step being 5-45, 12-45, 26-45, 33-45 and 40-45. As per [5], 
full covariance matrices were used per division with 0.2 added to 
diagonal terms for improved regularization. The adaptation file for 
forming the individual speaker staircases was a read passage taken 
from the novel “Homo Faber” by Max Frisch, mean length 3 min 
24 secs. Note that this passage was unavailable for two speakers in 
the test set, as in [5], [14] and an appropriate length of continuous 
read speech was used instead.  

Unless stated, all regression equations were generated using 
the training partition. For GSR, as per [5], the mean of each file’s 
LMLR’s was used to train a linear regression model: 

𝐿𝑀𝐿𝑅𝑚𝑒𝑎𝑛 =  1/𝑁 ∑ 𝐿𝑀𝐿𝑅𝑖

𝑁

𝑖=1

 (11) 

For the WGSR the mean and weighting parameters were 
updated using 1, 2, 5 or 10 adaptation iterations (iter) and all 5 test 
statistics were used to train a linear regression model. For Lin Reg 
fusion the weights were trained using the training set. 

We compare the GSR and WGSR results with a set of “brute-
forced” predictions (No-GSR). The No-GSR predictions were 
generated by training a regression system directly on a feature 
space comprised of 16 functions, [13],  evaluated from either the 
MFCC, SDC, FMT and SCF features. The regressor was 
LIBSVM’s epsilon Support Vector Regressor (ε-SVR) in 
combination with a linear kernel, and default hyper-parameter 
settings [24]. 

7. RESULTS 
7.1. Feature Space - Development Set Results  
The No-GSR systems, with the exception of the one using SDCs, 
outperform the AVEC 2013 challenge (Table 1). It is likely that the 
dimensionality of the SDCs made them unsuitable for this 
approach. The SCF results were surprising, offering one of the 
lowest development scores for this dataset in the literature. We 
speculate this result could be due in part to the robustness of the 
SCF feature to recording conditions [23]. SCFs have also be shown 
to be suitable for discriminating between the presence and absence 
of depression in speech [11]. 
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The GSR no adaptation results are all round chance level 
(RMSE of 11.90 [10]) but the inclusion of speaker adaptation, 
using (2), improved the performance of all features except MFCC 
(Table 1). These results are consistent with those presented in [5], - 
Formant based VTC features gave an RMSE of 9.99 before 
adaption and 8.40 after. We speculate the lower RMSE’s presented 
in [5] are due to the difference feature spaces, the VTC is 
specifically designed to exploit changes in articulatory 
coordination commonly seen in depression. 

WGSR offers a significant improvement over GSR – again 
with the exception of SDC – (Table 1), with the lowest RMSE for 
each feature space well below chance level and the challenge 
baseline. We speculate that the difference in the pattern of results 
for SDC is due to its higher dimensionality. Preliminary results not 
given indicated the importance of using and updating the weights. 
Given the skewness of AVEC 2013 development set towards lower 
BDI scores [4], we speculate that including updating weights helps 
the system adjust for the data imbalance among the different steps.  

Table 1. No-GSR and GSR and WGSR RMSE on AVEC 2013 
Development Set (AVEC 2013 Baseline 10.75 [10]) 
System MFCC SDC FMT SCF 
No-GSR 9.96 11.92 10.66 8.70 

GSR - No adapt. 11.17 11.74 11.57 11.22 
GSR  11.60 9.56 10.52 10.35 

WGSR - 1 iter 9.67 9.57 11.34 10.98 
WGSR - 2 iter 9.41 10.89 11.13 10.48 
WGSR - 5 iter  9.38 10.71 10.56 9.52 

WGSR - 10 iter 9.33 10.91 9.67 9.37 

7.2. No-GSR and WGSR Fusion - Development Set Results  
A benefit of the WGSR system can be seen in the fusion results 
(Table 2). None of the fusion methods trialed on the No-GSR 
systems significantly lowered the SCF result, whilst all fusion 
methods trialed for WGSR consistently lowered the RMSE’s 
obtained. These results are also consistent with those presented in 
[5] where fusion consistently improved their system performance. 
We speculate that poorer performance of the No-GSR system is 
due to the curse of dimensionality.  

Fusion of the WGSR feature space predictions gave the most 
consistent performance and reduced the RMSE’s below the best 
No-GSR result. A combination of MFCC, FMT and SCF with 
BEM fusion gave our best development set result offering an 8% 
reduction in RMSE when compared to the best WGSR result and 
23% reduction when compare to the best GSR no adaptation result. 
We speculate this combination of features covers a diverse variety 
of input spaces for depression prediction. 

Table 2. No-GSR and WGSR and Fusion RMSE’s on AVEC 
2013 Development Set (AVEC 2013 Baseline 10.75 [10]) 

Fusion System ALL MFCC+FMT+SCF MFCC+SCF 
Feature Space  
No-GSR 8.99 9.00 8.67 

BEM - No-GSR 9.22 9.31 8.71 
Lin Reg 
No-GSR 10.54 10.59 10.15 

LHD - WGSR 9.04 8.70 8.74 
BEM -WGSR 8.68 8.55 8.60 
Lin Reg-WGSR 8.75 8.66 8.70 

7.3. Test Set Results  
All test set RMSEs are well below the AVEC 2013 baseline and 
chance level RMSE of 11.51 (Table 3). Our best performance – 
9.75 – was obtained using the BEM fusion of MFCC’s, FMT’ and 
SCF’s. To the best of the author’s knowledge this is the second 
best test set result in the literature (Table 3). 

The results are consistent with the development set, 
confirming the suitability of WGSR for depression score 
prediction. The unfused WGSR results indicate that the technique 
is less susceptible to overfitting when compared to No-GSR SCF 
and challenge baseline. As in the development set results fusion 
improves system performance. 

Note that for the No-GSR system both the training and 
development sets were used to train the SVR. For WGSR both the 
training and development partitions were used to train the BGS and 
regression model. 

Table 3. Key results from literature and WGSR RMSE’s on 
AVEC 2013 Test Set AVEC 2013 Baseline 14.12 [10]) 

System RMSE 
MFCC-based Supervector [4] 10.17 

Canonical Correlation Analysis [25] 9.78 
VTC fused with Phoneme Rate [5] 8.50 

No-GSR (SCF) 10.96 
WGSR - SCF (10 iter) 10.26 

WGSR - MFCC (10 iter) 10.23 
WGSR- BEM (ALL) 9.90 

WGSR-LHD (MFCC+FMT+SCF)  9.76 
WGSR-BEM (MFCC+FMT+SCF) 9.75 

8. CONCLUSION 
This paper presents WGSR a regression method, in which feature 
vectors are mapped, using weighted and individually adapted 
pairwise Gaussians, onto multiple partitions of a feature space 
before using the output of this mapping to perform depression 
score prediction. Results indicate that WGSR offers useful solution 
to dealing with two commonly associated with depression score 
prediction – ordinal clinical scales for predicting against and 
skewed datasets. WGSR offers several promising research 
directions including exploring the effect of changing step 
partitions, adaptation coefficient and the regularizing coefficient. 

A key result presented is that fusion of WGSR systems 
consistently improved system performance which was not seen in 
the fusion of our No-GSR systems. The strong fusion results 
indicate the need to explore both fusion paradigms in more details, 
in particular weight fusion of likelihood ratios – a method 
commonly used in speaker verification tasks [18]. Future work will 
also include; an exploration into the benefits offered to depression 
analysis through VTC features and the use of both different 
probability distributions and classification paradigms to perform 
pairwise analysis.  
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