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ABSTRACT 
 

Computational methods for speech-based detection of depression 

are still relatively new, and have focused on either a standard set of 

features or on specific additional approaches. We systematically 

study the effects of feature type, machine learning approach, and 

speaking style (read versus spontaneous) on depression prediction 

in the AVEC-2014 evaluation corpus, using features related to 

speech production, perception, acoustic phonetics, and prosody. 

Using a multilayer ANN we find that one feature type, MMEDuSA 

[2], results in a 25% relative error reduction over the AVEC-2014 

baseline system [1] for both mean absolute error (MAE) and root 

mean squared error (RMSE). Other individual feature types 

perform comparably to the baseline, but have much lower 

dimensionality and simpler to interpret. Further improvements 

were achieved from fusing diverse features and systems. Finally, 

results suggest that the relative contribution of different feature 

types depends on whether the speech is spontaneous or read. 

Overall, spontaneous speech led to lower error rates than read 

speech, an important consideration for the collection of future 

clinical data. 

Index Terms— Depression detection, robust signal analysis, 

acoustic features, articulatory features, prosody, neural networks, 

clinical data 

 

1. INTRODUCTION 
 

Depression affects a significant portion of the human population 

and can often be life-threatening [3, 4]. Early detection, evaluation 

and treatment [5, 6] can help to reduce depressive symptoms and 

improve the quality of human life. Currently depressive symptoms 

are mainly assessed through subjective evaluations that require 

expert clinician intervention. Such clinical assessments provide an 

objective score to each patient [7], upon which further diagnosis 

and treatment are based. Such subjective clinical assessments are 

both labor- and time-intensive. Automatic detection of depression 

can help medical practitioners monitor for changes in depression 

status, and then prioritize follow-up with clinicians.  

In [8, 9] researchers have analyzed acoustic “bio-signatures” of 

major depressive disorder (MDD) before and after treatment with 

antidepressant medication; other studies [10, 11] have noted that 

the speech of subjects suffering from MDD shifts compared to 

non-MDD subjects. Detection of bio-signatures of MDD from 

speech has been explored by several researchers in the past. A wide 

array of features has been explored in the literature, in particular 

standard mel-cepstral features (MFCCs) [12, 13], prosodic features 

(such as pitch, energy, and speaking rate, etc.) [14, 15, 16], and 

traditional speech property based features such as formants, 

formant bandwidths, spectral energies, spectral tilt, etc. [13, 14, 15, 

16, 17]. Correlation structure features have been proposed recently 

[18], and demonstrated impressive MDD detection accuracy. Other 

studies [19] have used traditional MFCC features along with their 

velocity and acceleration coefficients. Studies have also used both 

audio and video modalities [19, 20] for MDD detection and 

demonstrated impressive accuracies. It was demonstrated in [20] 

that use of both audio and video modalities improves the accuracy 

of a MDD detection compared to using each modality alone. 

Speech is often easier to record and archive compared to video and 

is also expected to be more invariant. Hence speech-based MDD 

detection strategies can be expected to be cheaper in cost and 

relatively easier to prototype. In [19] the authors demonstrated that 

the audio data can give slightly better results than video; however, 

other studies [1, 21] have shown the reverse. 

In this work we conduct a systematic study that varies feature 

type, machine leaning approach, and the speaking task (read versus 

spontaneous).  Our goal is to better understand how these factors 

interact to influence automatic detection performance.  We present 

an audio-based neural network (NN) model for depression score 

prediction, where the scores are based on an individual’s self-

reported depression levels specified according to the Beck 

depression rating scale [22]. We analyze a wide array of speech-

based features and evaluate their performance on the 2014 Audio-

Visual Emotion recognition Challenge (AVEC) [1].  
 

2. DATA 
 

The AVEC-2014 dataset is an audio-visual depression corpus [1] 

that contains 300 videos of subjects (one subject per recording) 

recorded by a webcam and a microphone. This dataset includes 84 

subjects, with some subjects recorded more than once: 18 subjects 

appear in three recordings, 31 in two, and the remaining 34 in only 

one recording. The duration of each recording ranged from 20 

minutes to 50 minutes with an average duration of 25 minutes. The 

total duration of all clips is 240 hours. The average age of the 

subjects was 31.5 years, with a standard deviation of 12.3 years 

and a range of 18 to 63 years. The recordings took place in a 

number of quiet settings; however, we observed some ambient 

noise, reverberation and distortions introduced by the background 

into the audio recordings.  

The recordings consisted of speech that were spoken out loud 

while solving a task: counting numbers from one to ten; reading 

out loud; singing; telling a story from the subject's own past; and 

telling an imagined story. The recordings in the AVEC-2014 

challenge subset consist of only two tasks: Northwind (Read 

speech) and Freeform (spontaneous speech), which were supplied 

as separate recordings, resulting in a total of 300 (2x150) videos. 

The set of source videos is largely the same as that used for the 

AVEC-2013 challenge; however, five pairs of previously unseen 
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recordings were used by the organizers to replace a small number 

of videos used in the 2013 challenge.  

We resampled all data to 16 kHz. The challenge data was split 

into three partitions of training, development and test sets with 50 

Northwind-Freeform pairs in each set for a total of 300 task 

recordings. The training, development and test sets had similar 

distributions in terms of age, gender, and depression levels. There 

was no session overlap between partitions. The depression scores 

for the training and development set were distributed to the 

challenge participants by the organizers. The test set scores were 

not provided, hence in this work we present only the results from 

the development set. The performance metrics used for the AVEC-

2014 challenge were mean absolute error (MAE) and root mean 

squared error (RMSE). 
 

3. FEATURES 
 

We explored a diverse set of features that operate at multiple 

time scales: some are frame-level low-level descriptors, while 

others are speech segment-level global descriptors. The features 

also represent a broad range of complexities with respect to 

processing prior to final feature dimensionality. We restricted 

ourselves to automatically extractable features that do not rely on 

words for two reasons: privacy and practicality. Word features also 

require speech recognition, which may or may not be available at 

high enough performance levels for a particular individual or 

context. We explored three broad classes of features: (1) spectral 

features (SFs), (2) articulatory and phonetic features (APFs) and 

(3) prosodic features (PFs).  

Spectral features (SFs) include Gammatone Cepstral 

Coefficients (GCC). These features use a bank of gammatone 

filters to analyze speech; the resulting bandlimited signal within an 

analysis window of 26 ms is used to produce the gammatone 

spectra. A Discrete Cosine Transform (DCT) of the gammatone 

spectra is used to generate the GCC feature vector.  

Damped Oscillator Cepstral Coefficients (DOCC) [23] use a 

biologically plausible model of auditory hair cells that tries to 

capture the perceptually relevant information from audio. In 

DOCC processing the incoming speech signal is analyzed by a 

bank of gammatone filters (in this work, we used a bank of 40 

gammatone filters equally spaced on the equivalent rectangular 

bandwidth (ERB) scale), which splits the signal into band-limited 

subband signals. These subband signals are used as the forcing 

functions to an array of forced damped oscillators whose response 

is used as the acoustic feature. 

Normalized Modulation Cepstral Coefficients (NMCC) [24] 

are perceptually-motivated noise-robust acoustic features that track 

the amplitude modulation (AM) of subband speech signals. The 

AM trajectories of the subband speech signals are used to generate 

a modulation spectrum, whose cepstral information is used as the 

NMCC feature set.  
Modulation of Medium Duration Speech Amplitudes 

(MMeDuSA) [2, 25] tracks the subband AM signals of speech, and 

uses a medium duration analysis window (~52 ms). It also captures 

the overall summary modulation, which helps in tracking speech 

activity and detecting vowel prominence/stress. 
 

Articulatory and Phonetic features (APFs) include that capture 

manner and place of articulation as well as information pertaining 

to phonetic correlates of the speech acoustics. Articulatory 

Features (AFs) [26, 27] track the configuration of the speech 

production system, i.e., the vocal tract, dynamically in time. As 

depression affects a speaker’s production system AFs can 

potentially capture relevant signatures of depression from speech. 

In this work, we used a deep neural network (DNN) [26] to 

estimate the AFs in the form of vocal tract constriction variables 

(aka TVs) from speech. The AFs are an 8 dimensional feature and 

capture (1) Lip Aperture; (2) Lip Protrusion; (3) Tongue Tip 

Constriction Degree; (4) Tongue Tip Constriction Location; (5) 

Tongue Body Constriction Degree; (6) Tongue Body Constriction 

Location; (7) Velic Opening; and (8) Glottal Opening. 

Acoustic Phonetic (AP) features [28] represent acoustic 

phonetic information and are analyzed using a 10 ms window with 

5 ms frame rate. For the experiments reported in this paper 13 APs 

were used that represent information such as reflection 

coefficients, Hilbert envelope, periodic energy, aperiodic energy 

[29], nasal energy [30], etc. These provide information regarding 

voice quality, energy contour, etc., which can potentially act as 

biomarkers of depression in speech.  

Prosodic features (PFs) capture information relevant to the 

prosodic structure of speech and hence lack the fine-grained 

information of the spectral features. Pitch tracks (KaldiF0) [31] 

were obtained using the Kaldi pitch recognition toolkit [32] where 

the output contains a 2-D information of pitch tracks and a 

normalized cross-correlation function that gives indication of 

voicing. Depression usually results in speech with lower pitch 

dynamics.  

Energy contour features (encon) [33] aim to capture 

rhythmicity as well as overall speaking rate (without relying on 

phone recognition) by looking at the periodicity of energy peaks. 

The motivation behind using encon for the proposed task in this 

paper is that depressed speech may have a slower overall rate and 

be more temporally monotonous. This feature models the contour 

of 10 ms windows of the first two coefficients (c0 and c1) from an 

MFCC front end; each cepstral stream is mean-normalized over the 

utterance, making it robust to absolute level differences over both 

entire sessions and within-session segments. DCT is then taken 

over a 200 ms sliding window with a 100 ms shift. Vector 

components comprise the first five and two bases from the DCT 

over each window of c0 and c1, respectively. 

Spectral tilt (tilt) features capture vocal effort in a manner 

somewhat robust to extrinsic session variability, using methods 

developed in [33]. These features were extracted for voiced frames. 

Voicing was determined using a logistic regression classifier using 

number of zero crossings, log energy, number of peaks in the 

autocorrelation of the window signal, and standard deviation of the 

inter-peak distance, where the voicing threshold was set to 0.5.  

The five component spectral tilt features include H2-H1, F1-H1, 

and F2-H1 (where H1, H2 are the lower-order harmonics and F1, 

F2 are the first two formants), which reflect lower-order harmonics 

and formants given the microphone and room conditions. The last 

two features are measures of the spectral slope per frame and of the 

difference between the maximum of the log power spectrum and 

the maximum in the 2 kHz to 3 kHz range. 

F0 peaks (f0peaks) is an intonation-related feature that uses the 

pitch track to obtain pitch peak distributions, and various statistics 

on the location of pitch peaks relative to each other and to segment 

boundaries. The motivation behind this feature is that if depressed 

speakers sound less animated, this should result in fewer peaks 

spaced more widely apart (a measure of speaking rate) and the 

peaks may be less extreme than for non-depressed speakers. More 

details are in [34] 

4775



Note that encon, tilt and f0peaks are highly sparse features that 

capture very specific information at certain temporal locations of 

speech. Apart from the features detailed above, we also explored 

standard MFCC features. Table 1 provides a summary of the 

different features. The acoustic features (DOCC, MMeDuSA, 

GCC, NMCC and MFCC), AFs, APs and KaldiF0 were mean- and 

variance-normalized on a per-subject basis. In our prior experiment 

[34] we found i-vectors [36] to be an effective representation of 

the acoustic features. To compensate for the limited amount of data 

available in the AVEC-2014 dataset we trained a small Universal 

Background Model (UBM), which had 16 Gaussian components 

and the i-vector subspace had only 30 dimensions. The i-vectors 

were length normalized before being fed to the ANNs. For the 

other features (tilt, encon and f0peaks) we obtained a fixed-length 

representation using  statistics over the feature distributions (mean, 

variance, min, max) as well as statistics on distances between 

feature extraction regions (to capture durational characteristics).  
 

Table 1. Summary of all the features explored in this study  

Name Type Dimension 

DOCC acoustic 13 

NMCC acoustic 13 

MMeDuSA acoustic 16 

MFCC acoustic 13 

GCC acoustic 13 

AF articulatory 8 

AP Acoustic phonetic 12 

tilt vocal effort (sparse prosodic) 5 

encon rhythmicity (sparse prosodic) 7 

KaldiF0 pitch (prosodic) 2 

f0peaks rhythmicity, rate, pitch (sparse prosodic) 9 

 

4. DEPRESSION SCORE PREDICTION 
 

The features detailed in section 3 were transformed to a fixed 

length representation before being input to the ANN based 

depression score model. The i-vector representations had 30 

dimensions, whereas the others had the following: tilt = 24 dims; 

f0peaks = 27 dims and encon = 21 dims.  

We trained a separate ANN for each of the feature types and 

explored optimizing the number of neurons in each layer by using 

a leave-one-out strategy. The nets were trained with greedy layer-

wise learning, using back propagation with scaled conjugate 

gradient algorithm, where the inputs were the features and the 

targets were the Beck depression rating scores. Note that the ANNs 

had linear activation for the input and output layers, with tan-

sigmoid activation between the hidden layers. The performance of 

the ANNs was evaluated with Pearson’s product moment 

correlation (PPMC) coefficient, MAE and RMSE. All of the i-

vector systems demonstrated best performance when 2 hidden 

layers were used, while the rest demonstrated better performance 

with only one hidden layer. 

After all the individual feature-based ANNs were trained we 

performed m-way depression score fusion (where fusion was 

performed by simple (a) averaging the scores, or (b) taking the 

median of the scores) amongst all the subsystems.   

 

5. RESULTS AND DISCUSSION 
 

As mentioned earlier, the AVEC-2014 data contained two 

partitions: (1) read speech (identified as Northwind) and (2) 

spontaneous speech (identified as Freeform). For each of the 

ANNs, we obtained the performance metric over the whole 

development set, as well as over the read and spontaneous 

partitions individually as well. Table 2 presents the optimal ANN 

configurations for each of the features explored. In tables 3 a, b 

and c we present the obtained performance measures (rPPMC, MAE 

and RMSE) from each of the systems for the whole, spontaneous 

and read part of the development data. Tables 3 a, b and c show 

that there is no single feature that performs the best across 

conditions. While DOCC overall performs better than other 

features for read speech, the same is true for MMeDuSA for 

spontaneous speech. Some features (e.g., encon, AF, MMeDuSA) 

performed better for spontaneous speech, whereas others such as 

the APs and f0peaks performed better for read speech. For read 

speech the acoustic phonetic information (such as formants, 

periodic/aperiodic energy etc.) may be easier to capture because of 

the well-behaved nature and more careful articulation of speech, 

which may have contributed to the better performance of the APs. 

Overall, results indicate that it is easier to capture depression from 

spontaneous speech rather than from read speech. This suggests 

that speakers suppress their state somewhat when reading, because 

of the irrelevant nature of the content or the attention to reading, or 

both.  

 
 

Table 2. ANN configurations for each feature-based system. 

Feature Name 

ANN input 

dim. 

# of Neurons 

Layer-1 Layer-2 

DOCC 30 700 300 

NMCC 30 700 300 

MMeDuSA 30 500 400 

MFCC 30 900 200 

GCC 30 700 300 

AF 30 1000 500 

AP 30 600 300 

tilt 24 50 - 

encon 21 300 - 

KaldiF0 30 700 200 

f0peaks 27 26 - 

 

Table 3.a Depression prediction performance for the full 

development set. 

Class Feature Name MAE RMSE rPPMC 

SF  

DOCC 7.871 9.433 0.628 

NMCC 8.053 9.926 0.583 

MMeDuSA 7.673 9.656 0.600 

MFCC 8.120 10.104 0.567 

GCC 7.686 9.651 0.616 

APF 
AF 7.912 10.284 0.540 

AP 8.882 11.245 0.437 

PF 

KaldiF0 8.606 11.018 0.442 

tilt 8.938 10.829 0.424 

encon 10.251 12.581 0.330 

f0peaks 10.098 12.331 0.341 

 

The finding that spontaneous speech is better than read speech 

for depression detection has important potential impact for clinical 

data collection. Clinical studies that include speech often use only 

read speech passages in their protocol – presumably for 

convenience, privacy, and cross-speaker control.   What we find 
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suggests that it would be useful to also use spontaneous speech, 

modulo privacy issues.  Note that because our features do not use 

any word information, once features are extracted one could 

preserve privacy by simply discarding the original signal.    

 

Table 3.b Performance for the spontaneous portion of the 

development set. 

Class Feature Name MAE RMSE rPPMC 

SF  

DOCC 7.835 9.576 0.614 

NMCC 7.694 9.495 0.625 

MMeDuSA 6.778 8.674 0.695 

MFCC 7.989 10.000 0.582 

GCC 7.527 9.452 0.647 

APF 
AF 7.107 9.328 0.629 

AP 9.177 11.616 0.399 

PF 

KaldiF0 8.129 10.528 0.493 

tilt 8.152 9.806 0.571 

encon 9.136 11.030 0.482 

f0peaks 9.937 12.696 0.308 

 

Table 3.c Performance for the read portion of the development set. 

Class Feature Name MAE RMSE rPPMC 

SF  

DOCC 7.906 9.288 0.642 

NMCC 8.412 10.339 0.542 

MMeDuSA 8.569 10.546 0.508 

MFCC 8.251 10.208 0.557 

GCC 7.845 9.847 0.587 

APF 
AF 8.716 11.159 0.460 

AP 8.586 10.861 0.478 

PF 

KaldiF0 9.083 11.487 0.397 

tilt 9.725 11.763 0.265 

encon 11.365 13.961 0.201 

f0peaks 10.260 11.954 0.376 

 

In addition to the studies presented above, we performed m-

way score-level fusion of multiple systems; results are shown in 

Table 4 where we can see that best m-way fusion from the ANN 

systems gave us 32% and 35% relative reduction in MAE and 

RMSE compared to the AVEC audio-only baseline, and 21% and 

19% relative reduction in MAE and RMSE compared to the AVEC 

video-only baseline. We also observed some improvement in 

performance compared to our AVEC-2014 submission [34], where 

a relative reduction of 1.6% and 2.5% in MAE and RMSE and a 

relative increase of 1.7% in PPMC score were obtained. The 

systems that were selected for the best m-way fusion were NMCC, 

MMeDuSA, encon, DOCC, AF, KaldiF0 and AP. It was also 

observed that fusing the scores using the median rather than the 

average was more useful.  
 

Table 4. Depression prediction performance from different systems 

System Mode MAE RMSE rPPMC 

AVEC-2014 baseline audio 8.93 11.52 - 

AVEC-2014 baseline video 7.58 9.31 - 

SRI’s submission to AVEC-2014 audio 6.10 7.71 0.778 

m-way fusion of ANN audio 6.00 7.52 0.791 

Fusion of ANN + SRI’s submitted 

system to AVEC-2014 
audio 5.87 7.37 0.800 

 

Finally we combined our AVEC-2014 submission with the 

systems developed in this work and observed further performance 

improvement, where 3.8% and 4.4% relative reduction in MAE 

and RMSE and a 2.8% improvement in PPMC was observed 

compared to our AVEC-2014 submission system. The systems that 

got selected for this combination were MMeDuSA and AF. 

 

6. CONCLUSIONS AND FUTURE WORK 
 

In a systematic study varying feature type, machine learning, and 

speaking style in an AVEC data set, we demonstrated using 

multiple features that ANNs can be used to predict depression 

levels from speech. Overall we found that most feature types 

perform better using spontaneous rather than read speech. This 

finding suggests that where feasible, clinical data collections 

should include spontaneous speech (rather than only read speech) 

in their protocols.  

   We also demonstrated that further performance improvement can 

be achieved by selecting read versus spontaneous speech 

depending upon which feature is used, and that ANNs are a good 

learning approach.    A direct comparison with Support Vector 

Regression (SVR) results revealed that the ANNs are comparable 

and in fact sometimes better than the SVR for some features (e.g., 

AFs, APs, MMeDuSA etc.). In future work we plan to explore 

training separate models for read speech and spontaneous speech 

and performing both within-split and across-split detection 

experiments to understand how the features and systems behave 

under matched and mismatched spontaneous-read speech train-test 

conditions. We also plan to investigate the differences in 

depression recognition performance between read and spontaneous 

speech using additional speech data sets, to assess generalizability.  
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