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ABSTRACT

A common approach to recognize emotion from speech is to estimate
multiple acoustic features at sentence or turn level. These features
are derived independent of the underlying lexical content. Studies
have demonstrated that lexical dependent models improve emotion
recognition accuracy. However, current practical approaches can
only model small lexical units like phonemes, syllables or few key
words, which limits these systems. We believe that building longer
lexical models (i.e., sentence level model) is feasible by leveraging
the advances in speech synthesis. Assuming that the transcript of the
target speech is available, we synthesize speech conveying the same
lexical information. The synthetic speech is used as a neutral ref-
erence model to contrast different acoustic features, unveiling local
emotional changes. This paper introduces this novel framework and
provides insights on how to compare the target and synthetic speech
signals. Our evaluations demonstrate the benefits of synthetic speech
as neutral reference to incorporate lexical dependencies in emotion
recognition. The experimental results show that adding features de-
rived from contrasting expressive speech with the proposed synthetic
speech reference increases the accuracy in 2.1% and 2.8% (absolute)
in classifying low versus high levels of arousal and valence, respec-
tively.

Index Terms— emotion detection, synthetic speech, speech
rate, speech alignment

1. INTRODUCTION

Emotions play an important role in human communications [1].
Detecting the underlying emotional state of the user can be valuable
in the design of effective and engaging human computer interfaces
(HCI). We externalize emotions by modulating multiple acoustic
features. Prosodic features such as energy, fundamental frequency,
and speech rate are affected by emotions [2–4]. Spectral features
also present emotion dependent patterns. The externalization of
emotion is a complex process that is tightly coupled with the under-
lying lexical content [5, 6]. For example, emotional changes on the
first and second formants depend on the specific phoneme, where
low vowels, such as /aa/, with less restricted tongue position present
stronger emotional modulation than high vowels, such as /iy/ [7].
This dependency on the lexical content is commonly ignored in
current emotion recognition systems [8]. However, studies have
shown that lexical dependent models are more effective for emotion
recognition [5, 9–13].

One of the main challenges in building lexical dependent models
is defining the appropriate speech unit. Given the sparsity in emo-
tional data, most of the studies have considered small speech units
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such as phonemes or syllables [5, 9, 10]. However, it is challeng-
ing to model suprasegmental variations characteristic of expressive
speech with small speech units. Chauhan et al. [11] and Arias et
al. [13] proposed sentence level models (i.e., one model per utter-
ance). However, this approach is not practical in real applications. Is
it possible to build practical, lexical-dependent, emotional models at
sentence level? This paper proposes a novel solution based on syn-
thetic speech and neutral reference models to address this problem.

Advances in speech synthesis provide an opportunity to cre-
ate neutral reference models that can be contrasted with expressive
speech. Since text-to-speech (TTS) systems are built with neutral
speech, we expect that synthetic speech can provide a good repre-
sentation of neutral speech. These reference models can be used
to compare the acoustic properties of the target sentence. First, we
synthesize speech with the same transcript of the target speech, and,
therefore, they convey the same lexical information. We use word
alignments and dynamic time warping (DTW) to temporally align
both signals. We extract multiple features from the synthetic and
target speech signals, which are directly compared producing rela-
tive features. The experimental evaluation demonstrates that adding
these features increases the classification performance of the system
in detecting sentences with low or high level of valence (negative
versus positive) and arousal (calm versus active).

2. MOTIVATION

We have explored the powerful, scalable and appealing concept of
using neutral reference models to contrast deviations in speech prop-
erties associated with emotions [13–16]. Detecting focal regions is
required for success in designing truly novel robust emotion recogni-
tion systems. Our previous work considered lexical independent ref-
erence models for prosodic features in the forms of hidden Markov
models (HMMs) [14], Gaussian mixture models (GMMs) [15] and
functional data analysis (FDA) [16]. Extending the scope of these
approaches, this paper proposes synthetic speech as a viable frame-
work to create lexical dependent reference models. These models
are used not only to contrast prosodic features, but spectral and voice
quality features.

There are two underlying assumptions in this study. First, we as-
sume that acoustic features derived from synthetic speech will pro-
vide a good representation of neutral speech. This assumption is
reasonable, since TTS systems are trained with neutral speech, and
their ultimate goal is to produce speech that is perceived as natural
as possible. Second, we assume that lexical information (i.e., tran-
scriptions) for the target sentences is available. While this assump-
tion is valid in some practical scenarios, the use of automatic speech
recognition (ASR) may be required. This exploratory study consid-
ers actual transcriptions to evaluate the potential of this approach.

4759978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



TTS

Speech Database

text

LLD 
extraction

LLD 
extraction

synthetic 
speech

ta
rg

et
 sp

ee
ch

Alignment
(DTW+words)

MFCCs

+

HLD

target LLDs

relative LLDs

MFCCs

HLD

HLD

Cl
as
sif
ie
r

w
or

d 
al

ig
nm

en
ts

speech rate

Fig. 1. Proposed approach to use synthetic speech as a reference
model for emotion recognition.

While previous studies have used synthetic speech for training
emotion recognition systems [17, 18], the use of synthetic speech as
neutral reference to contrast expressive speech is novel.

3. APPROACH

This section describes the method proposed to use synthetic speech
as a neutral reference to contrast the acoustic properties of the target
speech. Details on the implementation are given in Section 4. Figure
1 shows the block diagram where low level descriptors (LLDs) cor-
respond to acoustic features estimated frame-by-frame (e.g., F0 con-
tour, RMS energy, Mel-frequency cepstral coefficients (MFCCs)).
For each speaking turn, we have the audio, the transcription, and
the word boundaries derived from forced alignment. A TTS system
takes the transcription and generates a synthetic signal conveying the
same lexical information as the target speech.

The synthetic and target speech signals are not timely aligned.
Therefore, we use the word boundaries and DTW to estimate the best
alignment. Section 3.1 describes this process. The final step is to
contrast acoustic features of the target sentence with the correspond-
ing ones extracted from synthetic speech. This process generates
relative features that are added to the speech emotion classifier. In-
stead of using LLDs, we estimate statistics or functional from LLDs
(e.g., the mean of the F0 contour), which are referred to as high level
descriptors (HLDs). Sections 3.2 describes how we contrast target
speech using the synthetic signal.

3.1. Time Alignment between Synthetic and Target Speech

The key idea of the approach is to compare frame-by-frame LLDs
derived from the target and synthetic speech signals. Therefore, it
is important to estimate the time alignment between both signals,
which is implemented in two steps. The first step takes the word
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Fig. 2. Example of alignment path between synthetic speech and
target speech for one sentence. The dots correspond to the word
boundaries.

boundaries of both signals either derived from forced alignment (tar-
get speech) or provided by the TTS system (synthetic speech). The
second step uses DTW to estimate alignment within words bound-
aries (i.e., sub-word alignment). DTW uses MFCCs as features for
the alignment, which have been successfully used in DTW-based
frameworks for discrete word recognition [19], and connected word
recognition [20]. The allowable region for the dynamic path was set
within the range of [1/3,3].

Figure 2 shows the warping path over one utterance. The dots
within the path correspond to constraints imposed by word bound-
aries in both signals (first step). Therefore, the alignment path al-
ways includes the word boundaries of target and synthetic speech
signals. This alignment path is used to estimate new relative features
for speech emotion recognition, as described next.

3.2. Contrasting Target and Synthetic Speech Signals

Using the alignment path, we estimate two sets of features that cap-
ture the differences between our reference neutral model (synthetic
speech) and the target speech. The first set corresponds to speech
rate features. The TTS system generates synthetic speech using du-
ration models that are appropriate for neutral speech. Emotional
speech has characteristic speech duration patterns that deviate from
neutral speech [4]. Here, we aim to use synthetic speech to identify
emotional cues reflected in longer or shorted speech durations from
the one that we would expect from neutral speech. We generated
a LLD by estimating localized ratio between the number of frames
from one signal corresponding to frames of the other signal. Then,
we convert the speech rate signal into logarithmic scale. Finally, we
smooth the resulting curve using a low pass Hamming filter of length
0.5 seconds. Figure 3 gives an example of the speech rate curve gen-
erated with this approach, which we consider as an extra LLD. The
HLDs derived from this curve are referred to as Duration HLD.

The second set of features corresponds to relative frame-by-
frame features estimated as follows. We compute LLDs for the
target and synthetic speech signals. Then, we align these feature
vectors by using the utterance level warping path. When one frame
of one signal is assigned to multiple frames of the other, we esti-
mate the average value of individual LLDs across frames. After the
LLDs are aligned, we subtract their values. This set of features re-
flects the deviations, in the feature space, of the target speech from
the ones derived from our reference neutral model – the synthetic
speech. We expect that these differences will increase as the acous-
tic features of the target signal deviate from the expected patterns
observed in neutral speech. Since we estimate these relative features
after time-alignment, the lexical dependency is intrinsically captured
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by this approach. These relative features can be used as extra LLDs
for speech emotion recognition. Similar to other features, we can
apply HLDs over speech segments, capturing statistics of these rel-
ative features. The HLDs derived from these features are referred to
as relative HLD.

4. IMPLEMENTATION

4.1. Database

The study relies on the SEMAINE database, which includes natu-
ral human interactions between a user and an operator [21]. Using
the sensitive artificial listener (SAL) framework, the operator plays
different characters with specific personalities, inducing emotional
reactions on the user. While the corpus provides audiovisual record-
ings, this study only considers the audio from ten users.

The duration of the sessions is approximately five minutes and
are evaluated by six raters in terms of arousal (calm versus active),
valence (negative versus positive), power (weak versus strong),
and expectation (predictable versus unexpected). We only consider
arousal and valence. The emotional labels are annotated using
FEELTRACE [22], which provides time-continuous traces reporting
frame-by-frame the emotional perception of the evaluators as they
watch the interactions. This study considers two separate binary
classification problems consisting in detecting sentences with low
or high level of arousal and valence. First, we correct the time-
continuous emotional labels by modeling the reaction lag of the
evaluators following the approach proposed by Mariooryad and
Busso [23, 24]. Then, we segment the corpus into fix windows of
1 sec, without overlap. For each emotional dimension, we estimate
the average value of the traces across evaluators during the duration
of each segment. Finally, we use the median of the values to define
the binary classes (low versus high) for arousal and valence. In total,
we consider 10,799 1-sec segments.

4.2. Speech Synthesis

As shown in figure 1, the system takes an input speech with its tran-
scription. The transcription is used to synthesize speech conveying
the same lexical content as the target sentence. The TTS system
used in this study is Festival, which is a general multi-lingual speech
synthesis system [25]. In particular, we use cluster unit selection
trained for an American male speaker as our speech synthesis ap-
proach [26], which is based on the concatenation of sub-word units
from a database of labeled speech. The appropriate units are selected
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Fig. 3. Smoothed speech rate curve for one utterance. The curve
gives the localized ratio between the frame durations of the synthetic
and target speech signals, expressed in logarithmic scale.

based on the phonetic and prosodic content by finding the optimal
path through the candidate units.

we use cluster unit selection as our speech synthesis approach

4.3. Acoustic Feature

We implement the approach using the LLDs proposed for the
Speaker State Challenge at Interspeech 2011 [27]. The feature
set is estimated with openSMILE [28], and consists of 60 different
acoustic features extracted every 10ms. The set includes MFCCs,
RASTA features, F0 contour, RMS energy, and voice quality fea-
tures. Instead of using the HLDs in the proposed set (4368 features
derived from this LLDs), we simplify the approach by estimating
only 17 HLDs: arithmetic mean, minimum, maximum, standard
deviation, kurtosis, skewness, number of zero crossing, number
of mean crossing, number of max, number of min, mean value of
max peaks, mean value of min peaks, linear regression slope, lin-
ear regression error, quadratic regression coefficients (a and b) and
quadratic error. The experiments considers three features sets:

• Baseline HLD: Target sentences – functionals derived from LLDs
and their first order derivative (2040=60⇥2⇥17)
• Duration HLD: Target and synthetic speech signals (Sec. 3.2) –
functionals derived from this duration LLD and its first order deriva-
tive (34=1⇥2⇥17)
• Relative HLD: Target and synthetic speech signals (Sec. 3.2) –
functionals derived from relative LLDs and their first order deriva-
tive (2040=60⇥2⇥17)

Given the high dimension of the features, we consider a two-
layer feature selection approach for each of the conditions evaluated
in this study. The goal of the first layer is to efficiently reduce the
set. We use information gain ratio for this purpose, which reduces
the number of feature to 500. The second layer is implemented with
correlation feature selection (CFS). CFS adds features one-by-one
by maximizing the correlation between the features and the labels,
and by minimizing the correlation between selected features. We
reduce the feature dimension to 100 for all the experiments, with the
exception of the evaluation of the Duration HLD set, which has only
34 features.

4.4. SVM Classifier

The emotion discrimination of the proposed relative features is eval-
uated with support vector machine (SVM) trained with sequential
minimal optimization (SMO) (implemented with WEKA [29]). We
use a polynomial kernel, where the SVM complexity parameter is
set to c=0.1. The evaluation considers the leave-one-subject-out
(LOSO) cross-validation approach, where all the data from one sub-
ject is either in the training or in the testing set (speaker-independent
partitions). Since we consider balanced emotional classes (Sec. 4.1),
we report the weighted average accuracy across speaker (ten folds).

5. RESULTS

We evaluate the SVM classifier with different set of features. Ta-
ble 1 lists the results. A classifier trained with the Baseline HLDs
achieves 63.8% and 59.9% of accuracy in detecting low and high
levels of arousal and valence, respectively. Notice that this is a chal-
lenging database, where it is very difficult to improve classification
performance. When we use the Duration HLDs set, the classification
performance is better than chances. Notice that this set only has 34
features, so we do not implement feature selection. It is interesting
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Table 1. Classification accuracy for low versus high level of arousal
(Aro.) and valence (Val). The classification performance at random
is %50, since the binary classes are balanced.

Feature set Aro. Val.
[%] [%]

Baseline HLD 63.8 59.9
Duration HLD 57.4 56.8
Relative HLD 63.3 58.6
Relative HLD & Duration HLD 63.5 60.3
Baseline HLD & Relative HLD 64.1 61.6
Baseline HLD & Relative HLD & Duration HLD 66.0 62.7

that contrasting the speech rate of both signals is effective in rec-
ognizing emotions. The duration models in the TTS systems offer
an opportunity to obtain discriminative emotional features with the
proposed framework. When we train the classifiers with the Relative
HLD set, the performance of the system is similar to the classifier
trained with the Baseline HLDs. The best performance is achieved
when all the feature sets are simultaneously considered (last row in
Table 1). The classifier trained with these features outperforms the
classifier only trained with the Baseline HLDs by 2.1% and 2.8%
(absolute) for arousal and valence, respectively. The relative features
derived after contrasting the acoustic features of the target and syn-
thetic speech signals provide complementary information that can
improve the classification performance of the speech emotion recog-
nition system.

We evaluate the features selected for the classifier trained with
Baseline HLDs and Relative HLD. For the analysis, we group the
LLDs into six classes, following the study of Busso and Rahman
[30]: RASTA, F0 (fundamental frequency), voice quality (VQ), en-
ergy, MFCC and spectral features. While RASTA and MFCCs fea-
tures are spectral features, their HLDs are grouped into separate
classes (i.e., they are not included in the class “spectral”). As de-
scribed in Section 4.3, we consider only 100 features from both sets
after the feature selection step. Figure 4 shows the number of fea-
tures included per group, for Baseline HLDs and Relative HLDs.
Over 26% of the selected features correspond to Relative HLD. This
result clearly demonstrates the contribution of the proposed features
in discriminating expressive speech. Most of the selected features
for arousal come from spectral features (very few MFCCs are se-
lected). We observe the opposite pattern for valence. Most of the
features come from MFCCs, and very few from spectral features.
We are currently exploring the underlying reasons for this result.

6. CONCLUSION

This study introduced a novel approach to create lexical dependent
models at utterance-level using synthetic speech. For a given tar-
get speech, we generate synthetic speech conveying the same lexi-
cal information. We use this signal as a neutral reference model to
contrast expressive speech, deriving relative features that capture de-
viations from neutral speech. The experimental evaluation demon-
strates that these features provide complementary information im-
proving the performance of the system in 2.1% and 2.8% (absolute)
in classifying low versus high levels of arousal and valence, respec-
tively.

This exploratory study on synthetic speech for emotion recog-
nition opens several research directions. The framework to contrast
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Fig. 4. Features used to train the classifiers after feature selection
over the Baseline HLD and Relative HLD sets. The figure shows the
number of features selected from each feature set. The results are
split into six feature groups.

the target and synthetic speech can be improved. For example, in-
stead of warping the features, we can re-synthesize the sentences
using the correct time boundaries. Therefore, the synthetic signal
not only will convey the same information as the target sentences,
but also will be timely synchronized, facilitating direct comparison.
Likewise, we are evaluating different speech synthesis approaches to
create the most suitable neutral reference model. Finally, instead of
building a single synthetic speech, we are planning to build a fam-
ily of synthetic sentences using different TTS methods. We expect
that this family of sentences will provide a better characterization
of neutral speech to detect deviations caused by localized emotional
behaviors.

Acknowledgements
Portions of the research in this paper use the Semaine Database col-
lected for the Semaine project (www.semaine-db.eu) [21]

7. REFERENCES

[1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis,
S. Kollias, W. Fellenz, and J.G. Taylor, “Emotion recogni-
tion in human-computer interaction,” IEEE Signal Processing
Magazine, vol. 18, no. 1, pp. 32–80, January 2001.

[2] K.R. Scherer, “Vocal communication of emotion: A review of
research paradigms,” Speech Communication, vol. 40, no. 1-2,
pp. 227–256, April 2003.

4762



[3] C. Busso, M. Bulut, S. Lee, and S.S. Narayanan, “Fundamen-
tal frequency analysis for speech emotion processing,” in The
Role of Prosody in Affective Speech, Sylvie Hancil, Ed., pp.
309–337. Peter Lang Publishing Group, Berlin, Germany, July
2009.

[4] M. Abdelwahab and C. Busso, “Evaluation of syllable rate
estimation in expressive speech and its contribution to emotion
recognition,” in IEEE Spoken Language Technology Workshop
(SLT), South Lake Tahoe, CA, USA, December 2014, pp. 472–
477.

[5] S. Mariooryad and C. Busso, “Compensating for speaker or
lexical variabilities in speech for emotion recognition,” Speech
Communication, vol. 57, pp. 1–12, February 2014.

[6] J.H.L. Hansen and B.D. Womack, “Feature analysis and neu-
ral network-based classification of speech under stress,” IEEE
Transactions on Speech and Audio Processing, vol. 4, no. 4,
pp. 307–313, July 1996.

[7] C.M. Lee, S. Yildirim, M. Bulut, A. Kazemzadeh, C. Busso,
Z. Deng, S. Lee, and S.S. Narayanan, “Emotion recognition
based on phoneme classes,” in 8th International Conference on
Spoken Language Processing (ICSLP 04), Jeju Island, Korea,
October 2004, pp. 889–892.

[8] C. Busso, M. Bulut, and S.S. Narayanan, “Toward effective
automatic recognition systems of emotion in speech,” in So-
cial emotions in nature and artifact: emotions in human and
human-computer interaction, J. Gratch and S. Marsella, Eds.,
pp. 110–127. Oxford University Press, New York, NY, USA,
November 2013.

[9] B. Vlasenko, D. Prylipko, D. Philippou-Hübner, and A. Wen-
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