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ABSTRACT
The OpenKWS14 keyword search evaluation is one of the
most challenging and influential evaluations in the field of
speech recognition. Its goal is to build a high-performance
keyword search system for a minority language with limited
training data in a short period of time. We present the system
of the Department of Electronic Engineering, Tsinghua Uni-
versity (THUEE team) for the OpenKWS14 keyword search
evaluation. The highlights of the system include the use of
convolutional maxout neural networks for acoustic modeling
and the use of neural network language models for one-pass
lattice generation. The final system is a fusion of 8 sub-
systems. The system has achieved an actual term weighted
value (ATWV) of 0.5107 for the full language pack (FullLP)
condition in the evaluation, ranking third among the partici-
pating teams.

Index Terms— Acoustic Modeling, Language Modeling,
Deep Neural Network, Keyword Spotting, Low-Resource

1. INTRODUCTION

Automatic speech recognition (ASR) technology is develop-
ing fast these days, largely due to the widespread application
of deep neural networks for acoustic modeling since 2011
[1, 2, 3]. While the speech recognition error rates for majori-
ty languages are relatively low, the performances for minority
languages remain poor since there are much less training data
compared with majority languages. With so many minority
languages in the world, building a speech recognition system
with limited data resources is a major challenge for ASR.

The OpenKWS evaluation is part of the IARPA Babel pro-
gram. Its goal is to build a high-performance keyword search
system for a “surprise” language with limited training data
in a short period of time. The identity of the language for
the OpenKWS14 evaluation is Tamil. According to the eval-
uation plan [4], there are several evaluation conditions with
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respect to the build pack utilization, the language resources
utilization and whether to re-use the test audio. We focus on
the required condition for all the participants, under which we
use the full language pack (FullLP), the baseline language re-
sources (BaseLR) and there is no test audio re-use (NTAR).
The evaluation metric for the keyword search accuracy is ac-
tual term-weighted value (ATWV), which is defined as

ATWV = 1− 1

K

K∑
w=1

(
#miss(w)

#ref(w)
+ β

#fa(w)

T −#ref(w)
),

(1)
where K is the number of keywords occurred in the refer-
ence, #ref(w) is the number of reference occurrences of the
keyword w, #miss(w) is the number of missing keywords,
#fa(w) is the number of false alarms, β is a constant set at
999.9 and T is the total duration of the corpus in seconds, as
a proxy of the total number of trials. The higher the ATWV
the better the performance.

Previous NIST spoken term detection evaluations show
that the ASR framework works well for keyword spotting [5].
The ASR framework is also adopted by all the participants in
the previous OpenKWS13 evaluation and in the Babel pro-
gram [6, 7, 8, 9]. We present the detailed system description
of the THUEE team, hoping to provide some inspirations to
not only the OpenKWS participants, but also researchers who
work on ASR and keyword search tasks.

The remainder of this paper is organized as follows. In
Section 2, we present the acoustic modeling strategies of the
system. In Section 3, we show our language modeling strate-
gies. In Section 4, we introduce our decoding and keyword
searching strategies. The detailed experiments are presented
in Section 5. The conclusions and future works are given in
Section 6.

2. ACOUSTIC MODELING

We have two acoustic modeling systems. One is based on the
Kaldi toolkit [10]. The other is based on HTK [11] but we
implement the DNN acoustic modeling tools in-house. Our

4734978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



in-house DNN training tool support fully-connected sigmoid
DNNs, deep maxout neural networks [12], stochastic pool-
ing maxout neural networks [13], convolutional neural net-
works (CNN) [14] and convolutional maxout neural networks
(CMNN) [15]. We further describe some details of our in-
house acoustic models, namely the maxout neural networks,
the CNNs and the CMNNs.

The maxout neural network is a feed-forward neural net-
work. The major difference from conventional sigmoid neural
network is that the neuron nonlinearity is achieved by select-
ing the maximum value within a local region, i.e.,

hil = max
j∈1...k

zijl , (2)

where hil is the ith activation in the lth layer, {zijl |j ∈ 1...k}
is the piece group corresponding to the activation hil . Previ-
ous works [12, 16] have demonstrated that maxout neurons
are effective for acoustic modeling under low-resource condi-
tions. One explanation is that the maxout nonlinearity avoids
the vanishing gradient problem [17] and yields better opti-
mization performance.

The CNN is a powerful model that shows excellent perfor-
mance for acoustic modeling [18, 14]. There are three major
differences between CNN and conventional sigmoid neural
networks. First, the CNN applies a set of small weights to
local regions of speech features, so that the local properties
of speech (e.g. the formant) are explicitly modeled. Second,
the value of the local weights are often shared in CNN, thus
parameter estimation can be more robust than conventional
DNNs. Third, there is often a pooling layer after the convo-
lutional layer in CNN, making the output of the pooling layer
less sensitive to the variance of the input features.

As the maxout neural network and the CNN are both ef-
fective models for low-resource speech recognition, it is natu-
ral to consider the possibility of combining them. The convo-
lutional maxout neural network (CMNN) takes advantage of
both models. There are three building blocks of the CMNN,
namely, the convolutional structure, the maxout nonlinearity
and the dropout training strategy [19]. In the CMNN, all the
neurons are maxout neurons. The lower layers of the CMNN
are convolutional while the upper layers are fully-connected.
It is also pointed out in [15] that the application of dropout to
only the upper fully-connected layers of the CMNN is effec-
tive for acoustic modeling in low-resource conditions.

We will show in the experiments the performance of the
acoustic models for the OpenKWS14 task.

3. LANGUAGE MODELING

Language modeling is also an important issue in ASR. In ad-
dition to a baseline trigram language model, we also use a
feed-forward neural network language model (NNLM) [20].
Because NNLMs are computationally expensive, previously
NNLMs have only been used to rescore lattices or n-best lists.

We have proposed a method to incorporate the NNLM direct-
ly into the decoder for first-pass lattice generation [21].

In NNLM, the output layer is a softmax layer to generate
the probabilities, i.e.,

P (q(wt) = j|wt−1
t−(N−1)) =

exp(otj)

zt
, (3)

where wt stands for the tth word, wt−1
t−(N−1) stands for the

N − 1 words before wt, q(wt) is the word index. otj is the
value before the softmax function and zt =

∑|V|
k=1 exp(otk)

is the normalizing factor for the softmax function. As the
number of output neurons for the NNLM equals the vocabu-
lary size |V|, which is quite large, the most time consuming
computation is to obtain the normalizing factor zt.

Our solution to speedup the NNLM computation is to reg-
ularize the variance of the normalizing factor zt. We intend
to minimize the variance of zt. If the variance of zt tends to
become zero, the normalizing factor zt will tend to become a
constant. Then only otk needs to be computed while zt can
be omitted. The way to achieve this is to add a variance reg-
ularization term to the cross entropy function J(Θ). Thus the
optimization function becomes

J̃(Θ) = J(Θ) +
η

2

1

|T|

|T|∑
t=1

(log(zt)−
1

|T|

|T|∑
t=1

log(zt))
2,

(4)
where η is a parameter to control the regularization term. The
gradient of J̃(Θ) is not difficult to derive. Then the NNLM
is trained by conventional back-propagation with the gradient
of the regularization term.

Since the NNLM trained with the regularization term is
much more computationally efficient at the test phase, we can
incorporate it directly into the decoder for first-pass lattice
generation. The implementation details are presented in [21].

4. DECODING AND KEYWORD SEARCHING

In the OpenKWS14 evaluation, we use the Kaldi decoder
for the Kaldi-based acoustic model and the trigram language
model, and we use our in-house decoder for our in-house a-
coustic models and NNLM.

Our in-house decoder is based on HDecode in the HTK
tools. It is a highly-optimized dynamic decoder [22]. The lat-
tices generated by the decoder are then converted to confusion
networks [23] for keyword searching.

We handle the out-of-vocabulary (OOV) keywords using
a similar idea to [24]. The pronunciations of the OOVs are es-
timated using the grapheme-to-phoneme (G2P) method [25].
For each OOV keyword, a proxy in-vocabulary (IV) keyword
is selected based on the word frequency in the training corpus.

We also discover in our experiments that the score nor-
malization and system combination are crucial for the final
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ATWV. We use the keyword-specific thresholding and expo-
nential normalization (KST) [26] to normalize the scores of
all the sub-systems. The system combination is performed
using the CombMNZ method [27]. The weights of the sub-
system scores for the system combination are based on their
maximum term-weighted values (MTWVs).

5. EXPERIMENTS

5.1. The OpenKWS14 corpus

The OpenKWS14 corpus1 includes a training set, a develop-
ment set and an evaluation set. The training set in the fullLP
language pack contains about 63 hours of transcribed conver-
sational audio (excluding silence) and about 12 hours of un-
transcribed conversational audio. Most of the conversational
audio is A-law telephone speech with a sample rate of 8kHz
but some conversational audio is recorded at a sample rate of
48kHz. There is also about 16 hours of scripted audio in the
training set which contains read-style speech. The develop-
ment set contains about 10 hours of conversational speech and
the evaluation set contains about 93 hours of conversational
speech. The training and the development set are released a
month before sites submit system outputs to NIST, while the
evaluation set is released a week before result submission.

A pronunciation lexicon is released along with the train-
ing set. There are 34 non-silence phonemes and the vocabu-
lary size for the conversational training set in the fullLP lan-
guage pack is 58470.

5.2. System setup

The baseline of our in-house system is based on HTK. We
only use the 63 hours of transcribed conversational training
data for the baseline setup. We extract 13-dimensional PLP
features along with their first-, second- and third-order deriva-
tives. A GMM-HMM acoustic model is trained with the 52-
dimensional PLP features. The dimension of the features is
then reduced to 39 using HLDA. The GMM-HMM contains
4505 triphone states via decision tree clustering and 20 Gaus-
sian mixtures for each state. The GMM-HMM is trained with
the maximum-likelihood criterion.

The baseline language model is a trigram model with
modified KN smoothing. The transcription of the conversa-
tional training data is used as the training text for the trigram.
The perplexity of the language model on the development
text is 872.571.

The baseline GMM-HMM is used to generate the state-
level transcriptions of the training data via forced alignment.
Then we start DNN training with the cross entropy criteri-
on. The features for the DNN training are 40-dimensional
filter-bank features with first- and second-order derivatives.
A context window of 11 frames (5+1+5) is used so that the

1language collection release IARPA-babel204b-v1.1b.

Table 1. Word error rate (WER) (%) of baseline systems on
the development set.

System WER
GMM-HMM 81.5
DNN-HMM 70.1

DNN-HMM + re-alignment 69.0

Table 2. Word error rate (WER) (%) and MTWV of the DNN,
CNN, CMNN and the bottleneck (BN) model on the develop-
ment set. The MTWVs are evaluated with the initial BBN
keywords and the scores are normalized using KST.

System WER MTWV
S1: DNN 69.0 0.2071
S2: CNN 68.1 0.2215

S3: CMNN 67.1 0.2316
S4: CMNN BN + maxout 66.6 0.2238

dimension of the input layer for DNN is 1320. We use 6 hid-
den layers and 1500 nodes for each hidden layer. The DNN
output layer size is the same as the GMM-HMM, which is
4505. The training of DNN starts with layer-wise RBM pre-
training [2] and then with standard back-propagation. After
training converges, the DNN is used to re-generate the state-
level transcriptions and we train another DNN with the new
transcriptions. The results of the baseline models on the de-
velopment set are given in Table 1.

5.3. Results of DNN, CNN and CMNN

As it is shown in Table 1, the baseline results are poor for
Tamil. We then try the CNN and the CMNN acoustic models
as they both have shown superior performance over conven-
tional DNNs for other tasks [14, 15]. The features for the C-
NN and the CMNN are the same as that for the DNN, namely
120-dimensional filter-bank features.

The CNN contains two convolutional hidden layers and a
max-pooling layer. The input feature vector is divided into 40
bands. The corresponding dimension of the 11 consecutive
feature frames are arranged in each band, together with their
derivatives. So that the input dimension to the CNN is 33×40.
The first set of convolutional filters are applied to 8 consecu-
tive bands and generate 768 feature mappings. So the number
of bands for the second hidden layer is 40− 8 + 1 = 33. We
then apply max-pooling across 3 bands to generate 11 bands.
The second set of convolutional filters are applied to 4 consec-
utive bands and generate 512 feature mappings. Three fully-
connected hidden layers of 1500 nodes are arranged after the
convolutional layers. The total number of parameters for the
CNN is 18.5M.

The input features for the CMNN are arranged in the same
way as the CNN. The first set of convolutional filters are ap-
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Table 3. MTWVs of the Kaldi-based models on the devel-
opment set. The MTWVs are evaluated with the initial BBN
keywords and the scores are normalized using KST.

System MTWV
S5: SGMM 0.2176

S6: BN + DNN 0.2269
S7: BN + pitch + DNN 0.2373

S8: fbank + pitch + DNN + sMBR 0.2487

Table 4. MTWVs with and without the NNLM on the devel-
opment set. The MTWVs are evaluated with the initial BBN
keywords and the scores are normalized using KST.

System MTWV
S3: CMNN 0.2316

S9: CMNN + NNLM 0.2386

plied to 8 consecutive input bands and generate 512 feature
mappings. We then apply the maxout nonlinearity of 2 pieces
and max-pooling of 3 bands. The second set of convolutional
filters are applied to 4 bands and generate 512 features map-
pings. There are 6 fully connected hidden layers following the
convolutional layers, all of them have 1000 maxout neurons
with 2 pieces. We apply a dropout rate of 0.2 to the 6 fully-
connected hidden layers of the CMNN. The total number of
parameters for the CMNN is 16.5M.

We also try to use the CMNN to extract the bottleneck
(BN) features. The structure of the CMNN is similar to the
previous one except we add a 150-dimensional linear BN lay-
er before the output layer. The number of nodes for the output
layer is 512 via tree clustering. The BN features are then fed
to a maxout neural network, which have 9 hidden layers, 1000
neurons for each layer and 2 pieces for each neuron.

The CNN, the CMNN and the BN model all use the state-
level transcriptions generated by the baseline DNN. Their de-
velopment set results are given in Table 2.

5.4. Results of Kaldi-based system

We have built 4 systems based on the Kaldi toolkit. Their
MTWVs are shown in Table 3. The SGMM system [28] is
trained with PLP features plus pitch features [29]. It is also
trained with speaker adaptive training (SAT) and bMMI dis-
criminative training. There are two DNN models trained with
bottleneck features. One is built upon the PLP plus pitch fea-
tures while the other is trained only with PLP features. The
best-performing model is a DNN with filter-bank plus pitch
features. It is first trained with the cross entropy criterion and
then enhanced by sMBR sequence training [30]. From the re-
sults in Table 3 we see that the pitch features are very effective
for Tamil although it is not a tonal language. Also, sequence
training provides large gains for the keyword search task.

Table 5. System combination results on the development set.

System MTWV
w/ KST w/o KST

S1-S9 0.3081 0.2915
S1-S8 0.3082 0.2962
S2-S9 0.3072 0.2929

S1 + S2 + S4-S9 0.3120 0.2935

Table 6. Comparing the evaluation data set ATWVs under the
fullLP condition with other OpenKWS14 participants.

Participants ATWV
LORELEI 0.5802

SINGA 0.5326
THUEE 0.5107
MSIIP 0.5104

5.5. Results of NNLMs

We then experiment with the neural network language mod-
el. The NNLM is trained with the transcriptions of the 63-
hour conversational training data. The context length of the
NNLM is 4 and the dimensions of the word feature and the
hidden layer are both set to 300. The NNLM is trained with
our proposed variance regularization, where the control pa-
rameter η is empirically set to 2.5. We try the NNLM with
the CMNN acoustic model and our in-house decoder. The re-
sults are shown in Table 4. The results show that the NNLM
is superior than the trigram for this keyword search task.

5.6. Results of system combination

It is well-known that system combination can greatly improve
the final keyword spotting result [26, 27]. Our system com-
bination results are shown in Table 5. The best result is ob-
tained by combining 8 sub-systems. The results also show
that applying KST normalization after system combination is
helpful, although KST is already applied to every sub-system.
Table 6 shows the official results on the evaluation set released
by NIST. The ATWV of 0.5107 is a state-of-the-art result.

6. CONCLUSIONS AND FUTURE WORKS

We propose a state-of-the-art keyword search system that
achieved a good performance in the OpenKWS14 evaluation.
Our main discoveries include: (1) CNN and maxout neurons
are effective for low-resource acoustic modeling. (2) NNLMs
can be useful for keyword spotting. (3) Pitch features and
DNN sequence training produce great gains for keyword
spotting. (4) System combination is crucial for the final re-
sult. In the future, we plan to explore efficient DNN sequence
training algorithms and better ways to handle OOVs.
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