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ABSTRACT

The ability to estimate the number of words spoken by an
individual over a certain period of time is valuable in second
language acquisition, healthcare, and assessing language
development. However, establishing a robust automatic
framework to achieve high accuracy is non-trivial in real-
istic/naturalistic scenarios due to various factors such as
different styles of conversation or types of noise that appear
in audio recordings, especially in multi-party conversations.
In this study, we propose a noise robust overlapped speech
detection algorithm to estimate the likelihood of overlapping
speech in a given audio file in the presence of environment
noise. This information is embedded into a word-count esti-
mator, which uses a linear minimum mean square estimator
(LMMSE) to predict the number of words from the sylla-
ble rate. Syllables are detected using a modified version of
the mrate algorithm. The proposed word-count estimator is
tested on long duration files from the Prof-Life-Log corpus.
Data is recorded using a LENA recording device, worn by a
primary speaker in various environments and under different
noise conditions. The overlap detection system significantly
outperforms baseline performance in noisy conditions. Fur-
thermore, applying overlap detection results to word-count
estimation achieves 35% relative improvement over our pre-
vious efforts, which included speech enhancement using
spectral subtraction and silence removal.

Index Terms— Word-count estimation, overlapped speech
detection, Massive audio data, Prof-Life-Log

1. INTRODUCTION

The ability to automatically count the number of words spo-
ken by an individual over a certain period of time (word-count
estimation) is important in a number of fields. Large scale
word-count estimation (i.e. over long durations) is beneficial
in determining the amount to which a child is exposed to new
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words; a factor that has proven essential for language acqui-
sition and development [1]. In [1], Hart et al. showed the
high correlation between more advanced language abilities
and academic success observed in children that are exposed
to greater word-count rates in early stages of language de-
velopment. The relationship between word-count values and
early signs of autism has also been the subject of studies [2].
Word-count values are also useful in the analysis of massive
audio data, such as the Prof-life-log corpus [3]. Prof-life-
log is a speech corpus that contains long durations of audio
recordings. In this collection, the primary speaker wears a
portable LENA recording device [4] throughout the workday.
Although the primary speaker is always the same individual,
the people he interacts with vary frequently. The LENA unit is
small in dimension and causes minimal self-awareness for the
primary speaker and people with whom he interacts, allowing
recordings to capture realistic conversations. Recording du-
rations typically vary between 6-to-8 hours and take place in
various environments and noise conditions. An estimate of
the primary speaker‘s speech activity (i.e. word-count) facil-
itates analyses that predict the level of productivity and helps
determine areas in the recording that are more valuable for
further processing. Prof-Life-Log is the context in which we
intend to investigate the performance of our proposed word-
count estimator (WCE).

One can estimate word-count by either (1) performing au-
tomatic speech recognition (ASR), or (2) take an indirect ap-
proach using acoustic characteristics of the signal to detect
syllables [5] and thereby estimate the word rate. Previously
in [6], Ziaei et al. developed a WCE for Prof-Life-Log in
which they used the latter approach. The proposed WCE
was a linear minimum mean square estimator (LMMSE) that
mapped syllable rates to word-count rates. There, the effect
of noise on word-count accuracy was observed and accounted
for by applying 1) spectral subtraction, to enhance the speech,
and 2) silence removal, to reduce the false alarm rates in the
syllable detector. Despite those efforts, the problem of sec-
ondary speakers, especially in crowded environments, was
still significant. In segments detected as speech for the pri-
mary speaker, if secondary speakers are also talking (typical
speech activity detection algorithms are blind to the number
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Fig. 1. Word-count estimation system configuration. The overlap detection system is shown as an addition to the original
system.

of speakers), the WCE system overestimates the rate of voiced
syllables. When there is a clear boundary between the pri-
mary and secondary speaker’s speech, one can remove the
interfering speech by merely applying an energy threshold;
since the primary speaker is much closer to the device. In the
case of overlapping speech, however, extra syllables are in-
serted in between the primary speaker‘s speech and removing
such instances requires more sophisticated processing.

In this study, our goal is to formulate a method in which
we can account for overlapped speech in noisy audio record-
ings by detecting such regions. Despite numerous studies tar-
getting overlapped speech detection [7, 8, 9, 10], overlap de-
tection in the presence of noise has seldom been visited [11].
Through this, we improve the accuracy of our word-count es-
timation algorithm by removing overlapped regions, which
are responsible for most of the insertion errors syllable de-
tection [6]. We start by introducing the WCE system con-
figuration, describing where we intend to embed the over-
lap detection system, section 2. Section 3 illustrates the pro-
posed overlap detection algorithm. System performances are
demonstrated in section 4 followed by conclusions.

2. WORD-COUNT ESTIMATION

The word-count estimator proposed in [6] estimates the num-
ber of words per unit time by applying a linear transformation
to the syllable rate. Syllable rates are calculated based on
a modified version of the mrate algorithm [5] using acous-
tic characteristics of the signal: pitch, smoothed spectrogram.
For a detailed description of the syllable detection algorithm
see [5, 6]. This algorithm detects the location of syllables in a
given speech segment, which is then used to calculate syllable
rates. It is shown in [6] that with the help of a linear minimum
mean square estimator (LMMSE), linear coefficients can be
derived that map the syllable rates to the number of words per
unit time.

ã = argmina

{ 1

N

∑
a

(
Wr(n)− aSr(n)

)2}
, (1)

where Wr(.) and Sr(.) are the word-count and syllable rates
at any given time, respectively. n indicates the index of a
given time segment and N is the total number of segments
used to train the linear transformation parameter, ã. The lin-
ear transformation parameter(s)1 can be trained using back-
ground conversational data that include transcriptions, so that
the target word-counts are also avaible. For this study, we
rely on a subset of Prof-Life-Log data that has been manually
transcribed.

In [6], higher accuracy is obtained by introducing speech
activity detection (SAD) [12] and spectral subtraction to the
front-end of the WCE. SAD reduces false alarms by omitting
non-speech regions, which helps avoid detection errors by the
syllable detector. Spectral subtraction enhances speech re-
gions, allowing the syllable detector to detect voiced regions
more accurately. None of these techniques, however, are able
to address the issue of overlapped speech.

2.1. Incorporating Overlap Detection in Word-Count Es-
timation

An estimation of the location and amount of overlapped
speech in a given speech segment can be combined with SAD
labels to supply an additional layer of data pruning before
syllable detection. Figure 1, shows the proposed WCE sys-
tem configuration. Initially, SAD is performed on the raw
data to detect speech locations. From SAD labels, the non-
speech regions are used to estimate the noise level in each
short segment and submitted to the spectral subtraction algo-
rithm. The speech-only segments are passed to the syllable
detector after applying spectral subtraction. Finally, syllable
rates (calculated by dividing the number of syllables by the
segment length) are transformed into word-count rates using
LMMSE coefficients. In our proposed system, overlap detec-
tion outputs are combined with SAD results, to provide an
extra layer of data pruning (as seen in Fig. 1).

1Note that ã is in general a vector parameter comprised of a bias factor
and a linear coefficient. In cases where the bias factor is used, Sr(n) is
replaced by

[
Sr(n) 1

]T
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3. OVERLAPPED-SPEECH DETECTION

Detecting regions of overlapped speech has proven to be use-
ful in applications such as speaker identification (SID) and
speaker diarization [9]. In all these applications, the presence
of a secondary speaker either decreases model reliabilities (in
training), or introduces confusion in the scoring process by
distorting test files.

When interfering speakers speak at the same time as the
primary speaker (i.e., overlapping speech), removing their
speech requires sophisticated processing; hence, we rely on
detecting these regions. One of the setbacks in detecting
overlapped speech in Prof-Life-Log is the high amount of
noise, which makes using traditional overlap detection meth-
ods [13, 14] less functional (see section 4.1). Hence, we
propose a novel approach for overlap detection based on en-
hanced spectrograms. These enhanced spectrograms, called
pyknograms, were first introduced in [15] to facilitate formant
tracking and are calculated by applying multiband demodula-
tion in the framework of the AM-FM modulaton model [16].
We take advantage of this approach to enhance noisy spec-
trograms and develop our overlap detection algorithm. The
next section briefly describes the algorithm through which
pyknograms are obtained. Readers are encouraged to visit
[15] for a more detailed discription.

3.1. Extracting pyknograms

In pyknograms, the resonances (formants) and harmonic
structure of speech are enhanced by decomposing the spec-
tral sub-bands into amplitude and frequency components.
This multiband analysis uses the AM-FM speech model [16]
to decompose the subbands and thereby calculate their cor-
responding instantaneous frequencies and bandwidths. The
speech signal is passed through a gammatone filterbank (our
studies show that using logarithmically spaced gammatone
filters is more effective in capturing harmonic structures,
while [15] uses linearly spaced Gabor filters 2). Each
resulting subband is then decomposed into amplitude and
frequency components using the discrete energy separation
algorithm (DESA-1) [16], where the frequency and amplitude
components of a given subband, x(n), are calculated using
the discrete energy operator,

Ψ[x(n)] = x2(n)− x(n− 1)x(n+ 1), (2)

with the following equations.

f =
1

2π
arccos

(
1− Ψ[x(n)− x(n− 1)]

2Ψ[x(n)]

)
(3)

|a| =

√
Ψ[x(n)]

sin2(2πf)
(4)

2It is worth mentioning that the goal in [15] was to detect formant loca-
tions, whereas in this study we intend to enhance prominent harmonics.
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Fig. 2. Demonstration of a pyknogram. The blue crosses
show locations of the pyknogram points on the time-
frequency scale. The spectrogram of the corresponding
speech segment is plotted in the background for comparison.

The weighted average of the instantaneous frequency compo-
nents are used to derive a short-time estimate value for the
dominant frequency in each subband over a fixed period of
time, in this case the duration of a time-frame (typically 25
msec).

Fw(t) =

∑n+T
t f(n)a2(n)∑n+T

t a2(n)
, (5)

where f(n) and a(n) are the instantaneous frequency and am-
plitude functions calculated for each sample in the tth frame
over the frame length (T samples per frame). Resonances and
harmonic peaks are located in each frame by comparing the
average frequency estimates with filterbank center frequen-
cies [15].

The motivation behind using an energy operator based ap-
proach [16] is to avoid assumptions on the number of speakers
in the signal. The AM-FM decomposition method relies on
signal resonances and does not restrict the signal to a specific
structure. The final time-frequency representation is called a
pyknogram and is denoted Spyk(t, f) as a function of time (t)
and frequency (f ).

3.2. Detecting overlaps from pyknograms

As a final step in detecting overlapped regions, we use sudden
jumps in the harmonic structure as an indication of interfering
speech. One can use the analogy that speech harmonic pat-
terns resemble skiing tracks. In the case of a single speaker,
the patterns form parallel tracks progressing over time. In the
presence of an interfering speaker, these patterns are distorted
by similar, but intersecting tracks, which increases the time
difference between the patterns. We use the difference be-
tween adjacent frames as our measure of overlapped speech.
The distance function, Dovl, at frame t is computed as the
Euclidean distance between consecutive pyknogram frames,
Spyk(t, f) and Spyk(t− 1, f) .
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Dovl(t) =

√∑
f

((
Spyk(t, f)− Spyk(t− 1, f)

)2)
. (6)

Overlapped segments are expected to have greater values as
compared to single-speaker speech. We use manually labeled
data to find the optimum threshold for Dovl. This threshold is
selected to minimize the equal-error-rate of overlap detection.

4. EXPERIMENTS AND RESULTS

In this section we first investigate the performance of our
overlap detection algorithm in noise and compare it with a
baseline overlap detection system that uses features called
Gammatone Sub-band Frequency Modulations (GSFM) [17].
In 4.2, we measure errors in word-count estimatation with and
without the use of overlap detection.

4.1. Overlap detection accuracy

Typical overlap detection systems are designed to detect over-
lapping speech segments in files that are generally clean of
any environment noise, which makes them less reliable for
data collected in real meeting and conversation scenarios,
such as Prof-Life-Log.

In order to evaluate overlap detection performance, our
overlap detection experiments are initially conducted on
the speech separation challenge (SSC) database [18]. This
database provides a manageable set of artificially generated
overlapped speech files. Each file is created by summing two
utterances spoken by 2 separate speakers from a pool of 34
speakers. We also have access to files that are ”clean“ of
overlapping speech. In order to evaluate the performance in
of our overlap detection system we use clean files as target
and overlapped files as non-target files (or vice versa). For
consistent performance in overlap detection, we use over-
lapped files with average signal-to-interference (SIR) of 0dB,
which means that the two utterances are mixed with the same
average energy. The SIR value is a key component in over-
lapped speech detection performance [17]. We use equal
error rates (EER, when false alarms and missed rates are
equal) as our measure of system performance. To measure
performance under noise, files are mixed with noise samples
extracted from Prof-Life-Log recordings with SNR values
ranging from clean(100dB) to −10dB. It is important in this
context that the difference between SIR and SNR be clear
to the reader. SNR specifies the amount of noise added to
the files (overlapped or not) and SIR determines the relative
energy of the two utterances in overlapped files. The noise
used here is the same in our word-count experiment. Figure 3
shows overlap detection EER values for different SNR values
and compares the performance with GSFM features. As seen
in the figure, GSFM performance drops dramatically even for
the most trivial noisy condition (20dB).

Fig. 3. A comparison of overlap detection equal error rates
(EER) for pyknogram (proposed) and GSFM-based systems
for different amounts of added noise. It is clear that GSFM is
vulnerable even to the slightest amount of noise (high SNR).

Table 1. WCE performance in Prof-Life-Log with respect to
overlapped speech.

minimum mean square Error
#ofwords

overlaps NOT removed 5.71%

overlaps removed 3.69%

It is worth mentioning that we did not include perfor-
mances from other overlap detection algorithms, since to the
best of our knowledge none of the existing algorithms claim
robustness in noisy conditions.

4.2. Word-count estimation experiments

Word rates are extracted from 5 days of prof-life-log record-
ings. Each day contains roughly 6 to 8 hours of audio which
has been transcribed to include the transcriptions of the pri-
mary speaker’s speech, speaker labels (primary vs. sec-
ondary), and the type of environment in which the recordings
take place. We have mostly concentrated on environments
that are more likely to contain overlapping speech, such as
multi-party meetings and conferences. The recording sam-
pling frequency from the LENA device is 44.1kHz, which
we have down-sampled to 8kHz. Table 1 shows over 35%
improvement in relative mean square error after removing
overlapped regions.

5. CONCLUSIONS

In this study we proposed a novel approach for noisy ove-
lapped speech detection. In addition, by combining the re-
sults of the overlap detection algorithm with an existing word
rate estimation algorithm, we were able to decrease relative
mean square errors by 35%. The proposed word-rate estima-
tor presents a valuable tool in processing massive audio data.
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