
AUTOMATIC GAIN CONTROL AND MULTI-STYLE TRAINING FOR ROBUST
SMALL-FOOTPRINT KEYWORD SPOTTING WITH DEEP NEURAL NETWORKS

Rohit Prabhavalkar1, Raziel Alvarez1, Carolina Parada1, Preetum Nakkiran2∗, Tara N. Sainath1

1Google Inc., Mountain View, USA; 2University of California, Berkeley, Department of EECS, USA
{prabhavalkar, raziel, carolinap, tsainath}@google.com preetum@berkeley.edu

ABSTRACT

We explore techniques to improve the robustness of small-footprint
keyword spotting models based on deep neural networks (DNNs)
in the presence of background noise and in far-field conditions. We
find that system performance can be improved significantly, with rel-
ative improvements up to 75% in far-field conditions, by employing
a combination of multi-style training and a proposed novel formula-
tion of automatic gain control (AGC) that estimates the levels of both
speech and background noise. Further, we find that these techniques
allow us to achieve competitive performance, even when applied to
DNNs with an order of magnitude fewer parameters than our base-
line.

Index Terms— keyword spotting, automatic gain control,
multi-style training, small-footprint models

1. INTRODUCTION

With the proliferation of mobile devices, speech-enabled technolo-
gies are becoming increasingly widespread. Services such as Google
voice search [1] and conversational assistants such as Google Now,
Apple’s Siri and Microsoft’s Cortana prominently feature speech
technologies as a means of interacting with and controlling devices.
Improving speech interfaces in these systems is critical to ensure
their widespread adoption.

In the present work, we consider the problem of developing a
keyword spotting (KWS) system that can run on mobile devices and
respond appropriately when a user utters a specific keyword [2]. Due
to resource constraints imposed by mobile devices, the proposed
KWS system must have a small memory and CPU footprint, while
simultaneously providing high performance in terms of false alarm
(FA) and false reject (FR) rates. Further, since the system is likely
to be used in various situations (e.g., while driving, in a crowded
restaurant, etc.) we require that the system perform well in a variety
of conditions.

Traditional approaches to KWS rely on the use of large vocab-
ulary continuous speech recognition (LVCSR) systems (e.g., [3, 4]).
In these systems, the task of KWS is reduced to searching for key-
words in utterances that have already been recognized and indexed
by the LVCSR system, and as such are unfeasible for on-device
KWS due to memory and power constraints. Examples of alterna-
tive approaches to KWS, which avoid a full Viterbi decoding of the
audio, include dynamic time warping (DTW) on phone posterior-
grams [5], training large-margin classifiers [6, 7] and point process
models [8].

In previous work, we presented a KWS system [2] based on
deep neural networks (DNNs) trained to identify word targets. This

∗This work was performed as part of a summer internship at Google.

Fig. 1: Block diagram of DNN-based KWS system proposed in [2].

method was shown to significantly outperform a baseline keyword-
filler system. This system is appealing for our task because it can
be implemented very efficiently to run in real-time on devices, and
memory and power consumption can be easily adjusted by chang-
ing the number of parameters in the DNN. Although the proposed
system works extremely well in clean conditions, performance de-
grades significantly when speech is corrupted by noise, or when the
distance between the speaker and the microphone increases (i.e., in
far-field conditions). In the present work, we explore techniques to
improve system robustness in these two conditions.

In order to improve robustness to background noise, we explore
the use of multi-style training, i.e., creating training instances by ar-
tificially adding in noise to simulate expected evaluation conditions,
which has been shown to result in large improvements while recog-
nizing noisy speech [9, 10, 11]. To improve performance in far-field
conditions, we develop a novel formulation of automatic gain con-
trol (AGC) [12, 13, 14] that attempts to selectively boost signal levels
based on estimating whether the signal contains speech or not.

The rest of the paper is structured as follows: In Section 2 we
review the details of the proposed DNN-based KWS system as de-
scribed in [2]. In Section 2.2, we present details of our proposed
AGC approach. We describe our experimental setup in Section 3,
and evaluate the effectiveness of our proposed system in Sections 4
and 5 where we demonstrate that the combination of AGC and multi-
style training improves false reject rates by up to 75%, relative, in
noisy far-field conditions. We also consider the effectiveness of these
techniques when applied to a DNN system with an order of magni-
tude fewer parameters than the system presented in [2], where we
find that using a combination of multi-style training and AGC allow
us to obtain competitive performance with extremely small models.
We conclude with a discussion of our findings in Section 6.

2. DNN-BASED KEYWORD SPOTTING SYSTEM

Our KWS system is an extension of our previous work [2], a block
diagram of which is shown in Figure 1. Conceptually, our system
consists of three components: (i) a feature extraction module which
extracts acoustic features which are input to a neural network, (ii)
a DNN, which computes posterior probabilities of the individual

4704978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

words in the keyword phrase, and (iii) a posterior handling mod-
ule which combines the individual frame-level posterior scores into
a single score corresponding to the keyword. Feature extraction and
DNN topology are described in Section 3 where we describe our ex-
perimental setup; the posterior handling module in described below.

2.1. Detecting Keywords using DNN Posteriors

In order to detect keywords in the incoming speech at run time,
we run our keyword detection algorithm repeatedly over slid-
ing windows of length Ts of the input speech. We denote x =
{x1, x2, · · · , xTs} as one such input window over the utterance,
consisting of individual frames xt ∈ Rn (in our experiments, these
correspond to log-mel-filterbank energies, stacked together with
adjacent left and right context frames). We assume that the keyword
to be detected, w, consists of M words, w = {w1, w2, · · · , wM}.
For each frame, t, in the input speech, we denote the posterior prob-
ability of the k-th word in the keyword by yt(wk). We compute
smoothed posterior values, st(wi), by averaging the posteriors over
the previous L frames, which in [2] are then used to define the
keyword score, ĥ(x,w), as follows:

st(wi) =
1

L

t∑
j=t−L+1

yj(wi); ĥ(x,w) =

[
M∏
i=1

max
1≤t≤Ts

st(wi)

] 1
M

(1)
The chief advantage of the keyword score in Equation 1 is its sim-
plicity: the score can be computed in Θ(MT) time, and has been
shown to achieve good KWS performance [2]. However, this score
does not account for the relative order in which the keyword tar-
gets ‘fire’. Therefore, in the present work, we define an alternative
keyword score, h(x,w), as the largest product of the smoothed pos-
teriors in the input sliding window, subject to the constraint that the
individual words ‘fire’ in the same order as specified in the keyword,

h(x,w) =

[
max

1≤t1≤···≤tM≤Ts

M∏
i=1

sti(wi)

] 1
M

(2)

Although the keyword score in Equation 2 contains additional con-
straints, it can still be computed in Θ(MT) time using dynamic pro-
gramming. In pilot experiments, we found that imposing the order-
ing constraint in Equation 2 significantly reduces FAs relative to the
keyword score in Equation 1. All results in this work are therefore
reported using the keyword score in Equation 2.

2.2. Automatic Gain Control

In order to improve the KWS system’s performance in far-field con-
ditions, where the input signal is attenuated because of distance, we
propose to use automatic gain control (AGC) to normalize the signal
level. The core assumption in traditional AGC systems is that the
signal to be boosted is present most of the time in the incoming au-
dio [12]. In our application, this tends to be the opposite: most of the
incoming audio does not contain speech, and thus it is undesirable
to boost it. This necessitates a more dynamic AGC (cf., [15]).

In order to distinguish portions of the sound signal correspond-
ing to input speech, we estimate two probabilistic classes which
model peak levels of the time-domain audio samples: the signal,
S, corresponding to input speech, and the non-signal floor, B, cor-
responding to background where no speech is present. This allows
us to selectively gain up only those speech samples that are likely to
contain speech, without boosting background noise. Our approach

is similar, in spirit, to previous work (e.g., [13, 14]), except that our
AGC implementation is designed to have a small footprint, introduce
minimal latency and be efficient in terms of its power consumption.

2.2.1. A Generative Model of Peak Signal Levels

We process the input time-domain signal by segmenting it into 100
ms non-overlapping chunks of audio samples. We then compute the
peak signal level, l, of the audio samples in each of these chunks,
where 0 ≤ l ≤ 1. The peak-level of audio chunks is modeled
as being generated from a mixture of two Gaussians: correspond-
ing to speech lS ∼ N (µS , σS) and non-speech background lB ∼
N (µB, σB), with µS > µB.1 Using relatively long non-overlapping
chunks allows us to assume that individual peak chunk-levels are
independent. Peak levels are used instead of softer norms (mean,
RMS, etc.) because we desire an indicator of the strength of the
dominant source in the chunk (e.g., 90ms of quiet speech and 10ms
of loud speech should still be identified as containing loud speech).

2.2.2. Parameter Estimation

We estimate the unknown model parameters: the means (µS , µB)
and standard deviations (σS , σB) using the Expectation-Maximization
(EM) algorithm (specifically, “hard”-EM), with modifications for ef-
ficient real-time updates:

1. Given current model estimates, we classify a new signal level,
l, as either S or B, using the simplified maximum-likelihood
hypothesis testing rule described in Section 2.2.3.

2. Once the chunk has been classified as either S or B, we
update model parameters for the corresponding class. For
GMMs, this requires the computation of sample means and
variances for each class. To do this efficiently, in real-time,
without using additional memory, we recursively compute
“moving averages” of the sample means and variances.2

2.2.3. Maximum-Likelihood Hypothesis Testing Rule

In order to classify the measured peak signal level, l, we compute
the likelihood ratio, R, to compare likelihoods of it belonging to the
two classes, namely speech or background noise:

R =
p(l|S)

p(l|B)
=
σB
σS

exp

(
−0.5

z2S − z2B

)
(3)

where, zS and zB are z-scores,

zS =
l − µS
σS

zB =
l − µB
σB

(4)

Thus, R > 1 ⇐⇒ z2S − z2B < −2 ln(σS
σB

). We make the further
simplifying approximation that σS ≈ σB, so that, our final classifi-
cation rule can be written as:3

classification(l) =

{
S, if z2S < z2B
B, otherwise

(5)

1The mixture component weights are both assumed to be 0.5, and are not
learned in our model.

2(µ← κµl + (1− κµ)µ) and
(
σ2 ← κσ(l − µ)2 + (1− κσ)σ2

)
,

with κµ = 0.5, and κσ = 0.33 in our experiments, determined by tun-
ing on the development set.

3This is reasonable because we expect the signal and noise variances to
be of roughly the same order, and in fact our ‘decay’ logic weakly enforces
this (see Section 2.2.4). Avoiding the computation of ln(σS

σB
) allows for

significantly reduced power consumption when running on the device.

4705

2.2.4. Model Decay and Gain Strategy

We ‘decay’ model estimates, to mediate certain undesirable effects
of incorrect classification: if either σS or σB (denoted by σX in
Equation 6, below) becomes too concentrated, new chunks will
likely not be classified into that class, and the model will not adapt.
Therefore, we slowly increase the variance of both models with each
iteration, to model growth of uncertainty over time.4

if (σ2
X < τ2) then σ2

X ← σ2
X +

σ2
S + σ2

B
2δ

(6)

If a chunk is classified as S, and if we are confident in our
estimates, i.e., if the signal and noise models are well-separated
(µS − µB > σS + σB), then we gain the input signal in order to
normalize the signal level; however, if the signal and noise estimates
are not well-separated, then we use a conservative gain strategy,5

gain =

{
θ

µS+σS
, if µS − µB > σS + σB
θ′

min(µS+σS ,µB+σB)
, otherwise

(7)

The gain is applied to scale up the input samples smoothly across
chunks (we do not attenuate the signal), while ensuring that no clip-
ping occurs.

3. EXPERIMENTAL SETUP

Our DNN systems are standard feed-forward, fully connected neural
networks, with three hidden layers and a softmax output layer. The
softmax output layer contains one output target for each of the words
in the keyword phrase to be detected, plus a single additional output
target which represents all frames that do not belong to any of the
words in the keyword (denoted as ‘filler’ in Figure 1). We determine
(word) labels for each input acoustic frame of the training utterances
by performing a forced-alignment using a large LVCSR system [16].
We use rectified linear unit (ReLU) activation functions for the hid-
den layers [17]. The input to the DNN consists of log-mel-filterbank
energies (computed over 25ms of speech, with a 10ms frame-shift),
stacked together with left and right context frames. Since each ad-
ditional frame of right context adds an additional 10ms of latency
to the system, we use a larger number of left contextual frames than
right contextual frames. Our acoustic feature extraction module and
the DNN runtime engine are both implemented using fixed-point
arithmetic in order to minimize power consumption [18]. The net-
work weights and biases are trained to optimize a cross-entropy cri-
terion using distributed asynchronous gradient descent [19].

3.1. Datasets

In order to validate the proposed approach, we selected fourteen
phrases6 and collected about 10K–15K utterances containing each of
these phrases. We also collected a much larger set of approximately
396K utterances which do not contain any of the keywords and are
thus used as ‘negative’ training data. The utterances were then ran-
domly split into training, development, and evaluation sets in the
ratio of 80:5:15, respectively. We also collected a much larger set of

4In our experiments, we set δ = 16, and τ = 0.5 ∗ (max signal level) in
Equation 6, determined by tuning on the development set.

5We set θ = 0.8 and θ′ = 0.1 in our experiments, determined by tuning
on a development set.

6The keyword phrases are: ‘answer call’, ‘decline call’, ‘email guests’,
‘fast forward’, ‘next playlist’, ‘next song’, ‘next track’, ‘pause music’, ‘pause
this’, ‘play music’, ‘set clock’, ‘set time’, ‘start timer’, and ‘take note’.

approximately 100K speech utterances from our anonymized voice-
search logs (dev-voicesearch) to use as an additional development
set; we select the system threshold to correspond to 1 FA per hour
of speech on this set.7 We further collected two types of additional
noisy data to represent two common use-cases for our proposed sys-
tem: cafeteria noise, consisting mostly of background speech, oc-
casionally mixed in with some music, and car noise collected in
various conditions (e.g., window cracked open, radio playing, air-
conditioner on, etc.). The collected noise sources were partitioned
into separate training/development and evaluation portions.

We created noisy training and evaluation sets by artificially
adding in car and cafeteria noise at various SNRs. Noisy training
data was created by adding a random snippet of car or cafeteria noise
to training set utterances at an SNR randomly sampled between [-
5dB, +10dB]. In addition to a clean evaluation set, consisting of
the utterances containing a given keyword and the set of ‘negative’
utterances, we also created noisy versions of the clean evaluation
set by adding in car noise at -5dB (car -5db), and cafeteria noise
at +5dB (cafe 5db), respectively. Since the most common far-field
use case for our application is one in which the user is driving,
we created far-field versions of the clean and car -5db evaluations
sets by simulating a distance of 100 cm between the speaker and
microphone (clean 100cm, car -5db 100cm, respectively).

4. EXPERIMENTS I: IMPACT OF MULTI-STYLE
TRAINING AND AGC

Our first set of experiments is aimed at determining the impact of
multi-style training and AGC on system performance. Following [2],
our DNN baseline system (baseline) consists of 3 hidden layers of
128 nodes each. The input to the net consists of 40 dimensional log-
mel-filterbank energies with 30 frames of left-context and 10 frames
of right-context. We run the keyword detection algorithm over slid-
ing windows of 100 frames (Ts = 100), with posteriors smoothed
over 30 frames (L = 30).

We compare performance of the baseline system against (i) a
system trained with multi-style training (MS), (ii) with AGC turned
on during evaluation (AGC) or (iii) both (MS+AGC). Receiver op-
erating characteristic (ROC) curves comparing the systems are pre-
sented in Figure 2. We present results at the operating point of 1 false
alarm (FA) per hour on the dev-voicesearch set in Table 1. Since av-
erage FA rates are consistently low across all of our systems and
evaluation sets, ranging from 0.03%–0.10%, we only report false re-
ject (FR) rates in Table 1. As can be seen in the table, performance
degrades significantly on the noisy and far-field sets, relative to the
clean set. The use of multi-style training significantly improves per-
formance over the baseline system on the noisy sets, with relative
improvements of 11.1% (car) and 27.3% (cafe) in FR rates, although
it does not produce gains on the far-field sets. Using AGC alone, pro-
duces large gains (approximately 75% relative) in FR rates of both
far-field datasets, but produces worse performance in the noisy eval-
uation sets with significant degradation on cafe 5db. We hypothesize
that this is the result of errors in the AGC’s modeling of speech and
background levels. We note, however, that removing this probabilis-
tic model of speech and background results in a much larger perfor-
mance degradation.8 Using a combination of AGC and multi-style

7At this operating point, our baseline system in Section 4 achieves 1 FA
per 25.6 hours of music and 1 FA per 45.7 hours of background noise.

8We compared our AGC implementation, to one in which there was no
probabilistic modeling of speech and background: each 100ms chunk was
smoothly gained towards θ

l
, where l is the peak chunk-level. At an operat-

ing point of 1 FA per hour on the dev-voicesearch set, the alternative AGC

4706

(a) Results on clean (b) Results on cafe 5db (c) Resuts on car -5db 100cm

Fig. 2: ROC curves comparing performance of the baseline system (baseline) against a system that employs multi-style training (MS), or
AGC during evaluation (AGC) or both (MS+AGC), for three of the evaluation sets: clean, cafe 5db and car -5db 100cm. ROC curves are
plotted by averaging performance over all of the keywords for each evaluation set. Curves closer to the origin are better.

training, improves performance over using AGC alone, achieving
large gains in clean and far-field conditions ranging from 22.2%–
78.1%, relative, albeit some performance degradation in noisy sets.
However, this difference is not significant (p ≥ 0.07)9 due to the
variance in FR rates for this set across the fourteen keywords. Over-
all, using a combination of multi-style training and AGC allows for
the best combination of performance averaged over all evaluation
sets. In particular, we note that performance of the MS+AGC system
does not change dramatically across all of the sets, unlike the base-
line where performance varied significantly across all of the evalua-
tion conditions.

System baseline MS AGC MS+AGC

clean 6.34% 6.48% 5.56% 4.93%†

car -5dB 8.85% 7.87%† 12.41% 9.79%
cafe 5db 11.24% 8.83%† 22.02%† 16.04%

clean 100cm 46.36% 46.61% 10.72%† 10.98%†

car -5db 100cm 47.00% 46.97% 11.97%† 10.31%†

average 23.96% 23.35% 12.54% 10.41%

Table 1: FR rates averaged across all keyword phrases, correspond-
ing to an operating point of 1 FA per hour on the dev-voicesearch
set. (†) indicates a significant difference (p ≤ 0.05) in FR rates,
relative to the baseline system.

5. EXPERIMENTS II: REDUCING MODEL SIZE

In order to satisfy memory constraints of mobile devices, our DNN
models need to be small; generally speaking, CPU usage and thus
power consumption are directly proportional to the number of pa-
rameters. In our second set of experiments, we examine how model
performance varies as a function of model size. In particular, we
are interested in determining whether we can achieve competitive
performance while reducing model size by an order of magnitude.

We reduce the number of model parameters in the system, rel-
ative to the baseline presented in Section 4, by using fewer mel-
filterbanks (15 instead of 40), reducing left and right context frames
(25 and 5, instead of 30 and 10, respectively), and using fewer nodes

performed well on clean sets (e.g., 10.6% FR @ 0.1% FA on clean), but it
performed significantly worse than our “speech-aware” AGC system (AGC)
on noisy datasets, in terms of both FR and FA (e.g., 18.9% FR @ 1.1% FA
on car -5db and 33.5% FR @ 0.3% FA on cafe 5db).

9We use a two-tailed Wilcoxon signed-ranks test for all significance test-
ing in this work.

in each of the three hidden layers (64 instead of 128), so that the
system has about 40K parameters (baseline-40k).

In Table 2, we report performance of the KWS systems aver-
aged across all of the keyword phrases, corresponding to an oper-
ating point of 1 FA per hour on the dev-voicesearch set. We report
performance of the baseline system (baseline-40k), a system trained
with multi-style training (baseline-40k+MS), and a system with both
multi-style training and AGC (baseline-40k+MS+AGC). Since aver-
age FA rates across all systems and evaluation sets are similar, rang-
ing from 0.03%–0.10%, we only report FR rates.

System baseline-40k baseline-40k baseline-40k
+MS +MS+AGC

clean 9.58% 10.06% 8.12%†

car -5dB 13.41% 12.39%† 16.76%
cafe 5db 16.61% 14.12%† 25.25%†

clean 100cm 56.01% 56.62% 16.60%†

car -5db 100cm 56.78% 57.12% 16.78%†

average 30.48% 30.06% 16.70%

Table 2: FR rates averaged across all keyword phrases, correspond-
ing to an operating point of 1 FA per hour on the dev-voicesearch
set. (†) indicates a significant difference (p ≤ 0.05) in FR rates,
relative to the baseline-40k system.

As seen in Table 2, although performance of the 40K parameter
baseline is worse than the 240K parameter baseline, trends are sim-
ilar as before: performance improves significantly with multi-style
training and AGC. In particular, multi-style training alone results in
significant improvements on the two noisy sets, with relative im-
provements of 7.6% (car) and 15.0% (cafe) in FR rates. Similarly,
the combination of multi-style training and AGC obtains large gains
in FR rates in the far-field condition (approximately 70% relative),
albeit a significant degradation in the noisy sets.

6. CONCLUSIONS

We examined techniques to improve the robustness of our previously
proposed system for small-footprint KWS [2], where we found that
the use of multi-style training, coupled with a novel “speech-aware”
AGC formulation allowed us to significantly improve KWS perfor-
mance in noisy, far-field conditions. Using both techniques, we
found that we were able to train a system with 6x fewer parameters
than our baseline, that outperformed a much larger baseline without
these techniques, and was only about 1.6x worse in terms of FR rates
than the larger baseline with these techniques applied.

4707

7. REFERENCES

[1] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne,
C. Chelba, M. Cohen, M. Kamvar, and B. Strope, ““Your word
is my command”: Google search by voice: A case study,” in
Advances in Speech Recognition, Amy Neustein, Ed., pp. 61–
90. Springer US, 2010.

[2] G. Chen, C. Parada, and G. Heigold, “Small-footprint key-
word spotting using deep neural networks,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014, pp. 4087–4091.

[3] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Re-
sults of the 2006 spoken term detection evaluation,” in Pro-
ceedings of Special Interest Group on Information Retrieval
(SIGIR), 2007, vol. 7, pp. 51–57.

[4] J. Cui, X. Cui, B. Ramabhadran, J. Kim, B. Kingsbury,
J. Mamou, L. Mangu, M. Picheny, T. N. Sainath, and A. Sethy,
“Developing speech recognition systems for corpus indexing
under the IARPA Babel program,” in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013, pp. 6753–6757.

[5] T. J. Hazen, W. Shen, and C. M. White, “Query-by-example
spoken term detection using phonetic posteriorgram tem-
plates,” in IEEE Workshop on Automatic Speech Recognition
and Understanding, ASRU, 2009, pp. 421–426.

[6] J. Keshet, D. Grangier, and S. Bengio, “Discriminative key-
word spotting,” Speech Communication, vol. 51, no. 4, pp.
317–329, 2009.

[7] R. Prabhavalkar, K. Livescu, E. Fosler-Lussier, and J. Keshet,
“Discriminative articulatory models for spoken term detection
in low-resource conversational settings,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013, pp. 8287–8291.

[8] K. Kintzley, A. Jansen, K. Church, and H. Hermansky, “In-
verting the point process model for fast phonetic keyword
search,” in Proceedings of Annual Conference of the In-
ternational Speech Communication Association (Interspeech),
2012, pp. 2348–2441.

[9] M. L. Seltzer, “Acoustic model training for robust speech
recognition,” in Techniques for Noise Robustness in Automatic
Speech Recognition, T. Virtanen, R. Singh, and B. Raj, Eds.,
pp. 347–368. John Wiley & Sons, 2012.

[10] A. Narayanan and D. L. Wang, “Investigation of speech sep-
aration as a front-end for noise robust speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 22, no. 4, pp. 826–835, 2014.

[11] D. Yu, M. Seltzer, J. Li, J. T. Huang, and F. Seide, “Feature
learning in deep neural networks - studies on speech recogni-
tion,” in Proceedings of International Conference on Learning
Representations (ICLR), May 2013.

[12] A. Perez, J. P. Pueyo, S. Celma, and B. Calvo, Automatic
Gain Control: Techniques and Architectures for RF Receivers,
Springer-Verlag, 2011.

[13] P. L. Chu, “Voice-activated AGC for teleconferencing,” in
Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 1996, vol. 2, pp. 929–
932.

[14] F. J. Archibald, “Software implementation of automatic gain
controller for speech signal,” Available Online: www.ti.
com/lit/wp/spraal1/spraal1.pdf, 2008.

[15] R. F. Lyon, “Automatic gain control in cochlear mechanics,”
in The Mechanics and Biophysics of Hearing, P. Dallos, C. D.
Geisler, J. W. Matthews, M. A. Ruggero, and C. R. Steele, Eds.,
vol. 87, pp. 395–402. Springer, 1990.

[16] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocabulary
speech recognition,” in Proceedings of Annual Conference of
the International Speech Communication Association (Inter-
speech), 2012.

[17] M. D. Zeiler, M. A. Ranzato, R. Monga, M. Mao, K. Yang,
Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and
G. E. Hinton, “On rectified linear units for speech processing,”
in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2013.

[18] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accu-
rate and compact large vocabulary speech recognition on mo-
bile devices,” in Proceedings of Annual Conference of the In-
ternational Speech Communication Association (Interspeech),
2013, pp. 662–665.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large
scale distributed deep networks,” in Proceedings of Advances
in Neural Information Processing Systems (NIPS), 2012, pp.
1223–1231.

4708

