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ABSTRACT

Many state-of-the-art speaker recognition engines use i-vectors to
represent variable-length acoustic signals in a fixed low-dimensional
total variability subspace. While such systems perform well under
seen channel conditions, their performance greatly degrades under
unseen channel scenarios. Accordingly, rapid adaptation of i-vector
systems to unseen conditions has recently attracted significant re-
search effort from the community. To mitigate this mismatch, in
this paper we propose nearest neighbor based i-vector mean nor-
malization (NN-IMN) and i-vector smoothing (IS) for unsupervised
adaptation to unseen channel conditions within a state-of-the-art i-
vector/PLDA speaker verification framework. A major advantage of
the approach is its ability to handle multiple unseen channels with-
out explicit retraining or clustering. Our observations on the DARPA
Robust Automatic Transcription of Speech (RATS) speaker recog-
nition task suggest that part of the distortion caused by an unseen
channel may be modeled as an offset in the i-vector space. Hence,
the proposed nearest neighbor based normalization technique is for-
mulated to compensate for such a shift. Experimental results with
the NN based normalized i-vectors indicate that, on average, we
can recover 46% of the total performance degradation due to unseen
channel conditions.

Index Terms— i-vector, nearest neighbor, PLDA, speaker
recognition, unsupervised adaptation

1. INTRODUCTION

The i-vector representation of acoustic signals has become a main-
stream front-end in state-of-the-art speaker and language recognition
systems [1]. Similar to the supervector representation for a Gaussian
mixture model (GMM) framework [2], an i-vector is a fixed-length
representation of a speech recording, but with much lower dimen-
sionality. Probabilistic linear discriminant analysis (PLDA) [3] can
then be applied to model the distribution of the i-vectors. PLDA
provides a powerful mechanism to jointly model the signal (i.e.,
speaker) and noise (i.e., channel, session, etc) subspaces. In order
for PLDA to provide the best performance, the acoustic conditions
(e.g., background noise, communication channel, room reverbera-
tion, etc) should be similar across the evaluation and development
data. Nevertheless, in real world applications, it can be impractical
to access large quantities of training data from many speakers and for
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every possible acoustic environment. Rather, it would be more real-
istic to assume access to some unlabeled data for unseen conditions
and to attempt to adapt to the new environment.

There are several articles that discuss approaches for domain
adaptation in order to improve robustness and generalization of
i-vector/PLDA speaker recognition systems [4], [5], [6]. These
approaches typically involve using some adaptation data to learn
and remove/suppress the nuisance channel directions. For instance,
nuisance attribute projection (NAP) was proposed, originally in the
GMM supervector framework, to remove directions related to chan-
nel or session variabilities [7]. Similar to NAP, more recently, an
inter-dataset variability compensation (IDVC) method was presented
in [5] to directly compensate for dataset shift in the i-vector domain.
Another method assumes that development data may originate from
several different sources [8] and without speaker labels. The source
normalization (SN) method estimates the between speaker covari-
ance based on different sources and the within-speaker covariance
is obtained by subtracting the estimated between speaker covariance
from the total covariance.

Intra-speaker variability can also be decomposed as between-
dataset and inter-session variabilities. In [4] one assumption is that
the inter-session covariance is shared across datasets. To adapt a sys-
tem to a new channel/domain, a Within-class Covariance Correction
(WCC) method was proposed to correct the intra-speaker covariance
by deemphasizing the direction related to the mean shift of the new
data i-vectors from the development data i-vectors. Consequently,
speaker labels are not required with this method.

In this paper, we propose a nearest neighbor based i-vector nor-
malization technique to compensate for the shift due to the unseen
channel characteristics. Unlike previous methods, the advantage of
this approach is its ability to handle multiple unseen channel record-
ings without retraining existing models or re-clustering unseen chan-
nel data. It can also be operated in an online mode as new data is
captured.

The rest of the paper is organized as follows: Section 2 presents
some properties of i-vectors for unseen channel data and introduces
the nearest neighbor based i-vector mean normalization (NN-IMN)
and i-vector smoothing (IS) techniques. Section 3 describes the ex-
perimental setup and results and Section 4 follows with the conclu-
sions.

2. NEAREST NEIGHBOR I-VECTOR NORMALIZATION

In order to detail the NN i-vector normalization technique, we begin
with describing our baseline system [9].
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2.1. Baseline System

Here we identify a generic i-vector/PLDA speaker recognition sys-
tem as three main components ( see Fig. 1):

1) I-vector Extraction: For each recording, the Baum-Welch suf-
ficient statistics are extracted using the UBM to form a high di-
mensional space (i.e., mean supervector space), and then a factor
analysis (FA) framework [10] is used to estimate a lower dimen-
sional total variability subspace [?] within which i-vectors repre-
sent the coordinates for each observation.

2) Intersession variability post-processing is performed by linear
discriminant analysis (LDA), followed by within class covari-
ance normalization (WCCN) [11].

3) Probabilistic linear discriminant analysis (PLDA) is used to
model i-vectors using between and within speaker subspaces [3].
It can also be used to score the verification trials as a log likeli-
hood ratio between same vs. different speaker hypotheses.

It is worth noting that both the LDA and PLDA models assume
Gaussian distributions. We have found that performing unit-length
normalization before both the LDA and the PLDA stages results in
improved speaker recognition performance.

2.2. Unseen Channel Effects in i-vectors

In order to simulate an unseen channel scenario, we use the speech
material from the RATS program which provides noisy and channel
degraded audio recordings from a total of 8 HF radio channels (la-
beled A through H) [12]. We hold one channel out at a time and
assume that the system is blind to that specific channel (i.e., apart
from the GMM-UBM, none of the major components of the base-
line system in Fig. 1 have seen data from that specific channel during
training). For example, assuming channel G as the unseen channel,
we only use data from channels A through to F, and H to train the
system components.

As an example, Fig. 2 shows the scatter plot of two (of the high-
est variance) dimensions of i-vectors extracted from the same set of
source recordings transmitted over channels A and G. We note that
the i-vector extraction process is trained on all channels except for
channel G. (Here, G is considered an unseen channel.) The blue
circles represent samples from channel A while the red crosses cor-
respond to recordings from channel G. One observation that can be
made from Fig. 2 is that the red crosses (i.e., samples from channel
G) are shifted away from the origin. Similar phenomena were also
observed when data from other channels were excluded from train-
ing. It may be possible to improve performance for unseen channels
if such a shift in i-vector space is compensated for. Here we propose
the nearest neighbor based i-vector mean normalization (NN-IMN)
and i-vector smoothing (NN-IS) technique to correct the shifts.

I-VecI-Vec ULN LDALDA WCCNWCCN ULNULN PLDA

NN-IMN
& IS

Unseen channel

i-vectors
All trained

i-vectors
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Baseline System

( 1 ) ( 2 ) ( 3 )

α

Fig. 1. Block diagram of a baseline i-vector/PLDA speaker recogni-
tion system.
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Fig. 2. Scatter plot of the original i-vectors with Channel G excluded
from system training.

2.3. Nearest Neighbor I-vector Normalization

In order to perform nearest neighbor based i-vector mean normaliza-
tion (NN-IMN) and i-vector smoothing (IS), we add a new functional
block to the baseline system as shown in Fig. 1. This new block
requires two i-vector datasets as inputs. The first dataset (shown
on the left) contains all unit-length normalized i-vectors used in the
training, while the second dataset (shown on the right) contains all
unit-length normalized i-vectors extracted from the unseen channel
data. It is worth noting here that our proposed technique performs
unsupervised adaptation, and the components in Fig. 1 and their as-
sociated models remain unchanged(i.e. no retraining).

The procedure for performing the nearest neighbor based i-
vector normalization follows.

2.3.1. Nearest Neighbor I-vector Mean Normalization (NN-IMN)

Given an i-vector to be compensated, we first compare the cosine
distance of this i-vector with i-vectors from the (seen and unseen
data) library. Specifically, the cosine distance between the i-vector
to be compensated, w, and a single library vector, xj , is given as,

dj =
w · xj

‖w‖ · ‖xj‖
. (1)

By rank ordering these distances, the K nearest neighbors are
determined, and the kth nearest neighbor is given as NNk(w). The
compensated, mean-normalized i-vector is given as,

wc = w − 1

K

K∑
k=1

NNk(w). (2)

Using this formulation, our pilot experiments on the RATS
speaker recognition task indicate the effectiveness of the NN-IMN
technique on verification trials involving samples from unseen chan-
nels. However, a slight performance degradation on the seen channel
recordings is observed. Given this observation, a smoothing stage
may help in the estimation process of the normalized i-vectors. One
such i-vector smoothing method is introduced next to alleviate this
issue.
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Fig. 3. Scatter plot of i-vectors from Channel G compensated by
NN-IMN and IS when Channel G is excluded from system training.

2.3.2. I-vector Smoothing (IS)

As noted previously, smoothing (maximum-a-posteriori based or
otherwise) may provide more robust estimates of compensated i-
vectors across a multitude of conditions. More specifically, IS is
given as,

w̃c = αwc + (1− α)w

= w − α

K

K∑
k=1

NNk(w), (3)

where α is a smoothing constant (0 ≤ α ≤ 1) that controls the
contribution of each component in the final estimate. Taken together,
for the i-vector, w, the sample average of its K-nearest neighbors
is first computed, and then the smoothing parameter, α, determines
the degree to which we compensate for the shift due to mismatched
conditions.

We now attempt to visualize the collective effect of the nearest
neighbor compensation with smoothing (α = 0.5) on unseen chan-
nel data. Fig. 3 shows the scatter plot of the resulting i-vectors (after
LDA and WCCN are applied) for unseen channel G recordings with
compensation applied. The channel G samples are colored (and as-
signed a shape) according to which quadrant the corresponding seen
channel A recordings came from. The leakage across the quadrant
boundaries indicates some of the variation that could not be normal-
ized. However, the majority of samples in one quadrant for channel
A, remain in the same quadrant for channel G after compensation.

Given this, processing i-vectors with the proposed nearest neigh-
bor based normalization technique may help speaker recognition
performance. This is verified in the following section.

3. EXPERIMENTS

3.1. Data and System

In this section we describe the experimental setup used in our eval-
uations. We begin by discussing the data used and then provide a
brief overview of the i-vector extraction process.

Speech material used in our evaluations is sourced from data dis-
tributed by the Linguistic Data Consortium (LDC) for the DARPA
RATS program [12]. It comprises conversational telephone speech
(CTS) recordings that have been retransmitted (through LDC’s Multi
Radio-Link Channel Collection System) and captured over 8 de-
graded HF radio communication channels (labeled A–H). There are
various distortion characteristics, some of which can be described
as nonlinear (e.g., clipping, amplitude compression as well as fre-
quency shift effects) and the noise is to some extent correlated with
speech. The speech data is from five languages: Levantine Arabic,
Dari, Farsi, Pashto, and Urdu.

The training set consists of 20k segments each with approxi-
mately 30 seconds of speech. This gives roughly 2,500 segments
per channel. There are a total of 5,000 speakers in this training set.
In this study, we evaluate the trials constructed from six 30-second
sessions for enrollment and a single session for test. Our internal
evaluation set contains 21k segments from 314 speakers from which
we generated a total of 151k trials across the eight channel condi-
tions. The speaker recognition performance is reported in terms of
percent equal error rate (EER).

We now describe details of the system (similar to [9]) used for
scoring the trials. For the speech parameterization, 19-dimensional
MFCCs (32 ms frames every 10 ms using a 24-channel Mel-
filterbank) span the frequency range 125–3700 Hz. The first and
second temporal derivatives are computed over a 5-frame win-
dow and are appended to the static features. This results in 57-
dimensional feature vectors. Segment level mean and variance
normalization is applied based on speech-only frames determined
by a speech activity detection (SAD) component that uses energy,
voicing, and spectral divergence parameters. To learn the i-vector
extractor, a 1024-component gender-independent GMM is trained.
The dimensionality of the total variability subspace is set to 400,
which is further reduced to 200 dimensions using LDA followed
by WCCN [11]. Unit-length normalization is applied twice, that is
once before LDA and before PLDA modeling (see Fig. 1).

3.2. Results and Discussion

In this paper there are four main approaches evaluated:

1. Full-Train: The system is trained with all data available, in-
cluding all channel data (Channels A–H).

2. Leave-one-out: This approach involves removing a single
channel (for example Channel A) from the system building
process. It allows us to observe the performance degradation
for channels not seen in system training.

3. NN-IMN+IS: Our proposed method whereby each i-vector is
compensated by its K nearest neighbors, (K = 100 and with
a smoothing factor, α = 0.5).

4. WCC, 1-Cluster: For comparison, we also incorporated the
Within-class Covariance Correction (WCC) method (with de-
tails in [4]). This method adjusts the estimate of the within
class covariance based on including across-dataset covariance
information. We also evaluate a 4-cluster version in an exper-
iment where 4 channels are treated as held out (or unseen)
from system training.

Given the four approaches, the first set of results (Fig. 4) show
the test-channel specific performance when the test-channel is held
out from system training. The chart plots the equal error rate as
a function of the eight different held-out channel scenarios and the
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four system approaches. The unseen channel versus the seen chan-
nel performance degradation is substantial; after comparing the first
and second bars for each channel, we observed up to 3 times the per-
formance degradation. However, we note that for all eight channel
cases, the performance gap was reduced by using NN-IMN+IS (the
third bar), or WCC (the fourth bar). Overall, the results of the nearest
neighbor approach are mostly comparable to the WCC method. On
average, across the channels, the proposed nearest neighbor based i-
vector normalization method recovers 46% of the total performance
degradation.

While Fig. 4 shows that the unseen channel performance can
be improved by using unsupervised methods, it is also important to
ensure that the combination of seen and unseen channel scores is
robust. In Fig. 5, we show the 30 second task performance calcu-
lated from the complete set of trials for seen (7 channels) and un-
seen (1 channel) test-segment channels (averaged across the eight
different held out channel scenarios presented earlier). The results
are plotted as a function of the number of K-nearest neighbors for
the NN-IMN+IS technique and are contrasted with the other iden-
tified methods. The best NN-IMS+IS performance is achieved at
400 nearest neighbors and is comparable to the WCC approach. The
overall results show that both methods improve the performance for
the unseen channel recordings while maintaining compatibility and
performance with the seen channel recordings.

An advantage of the proposed nearest neighbor method is its
ability to handle multiple unseen channels. To evaluate, we con-
ducted experiments that exclude channels B, D, F and G from train-
ing. The results for each channel (A–H) are shown in Fig. 6 for 5
different systems. The first system is the fully trained system as be-
fore. The second approach is the same system as the first system ex-
cept that channels B, D, F and G are excluded from system training.
The remaining systems (NN-IMS+IS, 1 and 4 cluster WCC) use the
same data in system building as the second system. In comparing the
first and second bars, the performance on unseen channels (shown as
[B], [D], [F] and [G] in the chart) is significantly degraded. However,
the NN-IMS+IS system (third bar) provides significant performance
improvement for unseen channels over the unadapted system. For
the 1-cluster WCC method, only small gains on unseen channels are
observed. In contrast, if we assume that all channel labels of the
unseen channel recordings are known and there are 4 clusters mod-
eled, then the WCC method works well. The results suggest that the
WCC technique depends on a suitable clustering of the unseen chan-
nel data. We note that the nearest neighbor system does not need an
explicit retraining or adaptation and can be run in an online mode.

4. CONCLUSIONS

We proposed a nearest neighbor based i-vector normalization tech-
nique for unsupervised adaptation to unseen channel conditions.
We have shown that on our internal data set for the DARPA RATS
speaker recognition task, the proposed technique can recover 46%
of the performance degradation due to unseen channel conditions.
Some of the benefits of the proposed method are: 1) the ability to
handle multiple unseen channels, 2) no need for explicit clustering
or retraining, 3) can be operated in online mode, and 4) maintains
performance for seen channels. In conclusion, the presented ap-
proach provides for a viable solution in many field applications
where data mismatch is a concern.
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