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ABSTRACT

This paper presents a generalized i-vector representation frame-
work using the mixture of Gaussian (MoG) factor analysis for
speaker verification. Conventionally, a single standard factor anal-
ysis is adopted to generate a low rank total variability subspace
where the mean supervector is assumed to be Gaussian distributed.
The energy that can’t be represented by the low rank space is mod-
eled by a single multivariate Gaussian. However, due to the sparsity
of the frame level posterior probability and the short duration char-
acteristics, some dimensions of the first-order statistics may not be
Gaussian distributed. Therefore, we replace the single Gaussian
with a mixture of Gaussians to better represent the residual energy.
Experimental results on the NIST SRE 2010 condition 5 female task
and the RSR 2015 part 1 female task show that the MoG i-vector
outperforms the i-vector baseline by more than 10% relatively for
both text independent and text dependent speaker verification tasks,
respectively.

Index Terms— Speaker verification, factor analysis, mixture
of Gaussian, i-vector

1. INTRODUCTION

Total variability i-vector modeling has gained significant attention
in both speaker verification (SV) and language identification (LID)
domains due to its excellent performance, compact representation
and small model size [1, 2, 3]. In this modeling, first, zero-order
and first-order Baum-Welch statistics are calculated by projecting
the MFCC features on those Gaussian Mixture Model (GMM) com-
ponents using the occupancy posterior probability. Second, in order
to reduce the dimensionality of the concatenated statistics vectors, a
single factor analysis is adopted to generate a low dimensional total
variability space which jointly models language, speaker and chan-
nel variabilities all together [1]. Third, within this i-vector space,
variability compensation methods, such as Within-Class Covari-
ance Normalization (WCCN) [4], Linear Discriminative Analysis
(LDA) and Nuisance Attribute Projection (NAP) [5], are performed
to reduce the variability for the subsequent modeling methods (e.g.,
Support Vector Machine [6], Sparse Representation [7], Probabilis-
tic Linear Discriminant Analysis (PLDA) [8, 9, 10], etc.).

Conventionally, in the i-vector framework, the tokens for calcu-
lating the zero-order and first-order Baum-Welch statistics are the
MFCC features trained GMM components. Such choice of token
units may not be the optimal solution. Recently, the generalized
i-vector framework [11, 12, 13, 14, 15] has been proposed. In this
framework, the tokens for calculating the zero-order statistics have
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been extended to tied triphone states, monophone states, tandem
features trained GMM components, bottleneck features trained
GMM components, etc. The features for calculating the first-order
statistics have also been extended from MFCC to feature level
acoustic and phonetic fused features [13]. The phonetically-aware
tokens trained by supervised learning can provide better token sep-
aration and discrimination. This enables the system to compare
different speakers’ voices token by token with more accurate token
alignment, which leads to significant performance improvement on
the text independent speaker verification task [11, 12, 13, 14, 15].

In both the traditional and the generalized i-vector frame-
works, after statistics calculation, a single standard factor analysis
is adopted to generate a low rank total variability subspace for
dimension reduction. In this generative model, the first-order statis-
tics vector is assumed to be Gaussian distributed and the residual
that cannot be represented by the low rank total variability space is
modeled by a single multivariate gaussian distribution. However,
due to the sparsity of the frame level posterior probability vectors
on those tokens, the uneven distribution of zero-order statistics on
different tokens, and the short duration characteristics, some dimen-
sions of the first-order statistics may not be Gaussian distributed.
Therefore, we propose a generalized factor analysis framework
by replacing the single Gaussian with a mixture of Gaussians to
better model the residual noises. This idea was originally proposed
in [16] to fit the complex residual energy in the robust principal
component analysis (PCA) framework. In this work, we extend
the MoG residual noise fitting method [16] from PCA to factor
analysis. The MoG factor analysis model parameters and the MoG
i-vectors are trained and extracted by Expectation-Maximization
(EM) algorithm and point estimate, respectively.

Furthermore, in the short duration speaker verification scenario,
the zero-order statistics on certain tokens may be too small to ro-
bustly make the first-order statistics Gaussian distributed. There-
fore, the proposed MoG i-vector framework could also be adopted
in short duration speaker verification tasks.

The remainder of the paper is organized as follows. The base-
line and the proposed algorithms are explained in Section 2. Ex-
perimental results and discussions are presented in Section 3 while
conclusions are future works are provided in Section 4.

2. METHODS

First, we will introduce the i-vector baseline and the statistics cal-
culation for the generalized i-vector approach. Second, the details
of the proposed MoG i-vector framework are provided. Finally, the
scoring backend is described.
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2.1. The i-vector baseline

In the total variability space, there is no distinction between the
speaker effects and the channel effects. Rather than separately us-
ing the eigenvoice matrix V and the eigenchannel matrix U [17],
the total variability space simultaneously captures the speaker and
channel variabilities [2]. Given a C component GMM UBM model
λ with λc = {pc, µc,Σc}, c = 1, · · · , C and an utterance with a L
frame feature sequence {y1,y2, · · · ,yL}, the 0th and centered 1st

order Baum-Welch statistics on the UBM are calculated as follows:

Nc =

LX
t=1

P (c|yt, λ) (1)

Fc =

LX
t=1

P (c|yt, λ)(yt − µc) (2)

where c = 1, · · · , C is the GMM component index and P (c|yt, λ)
is the occupancy probability for yt on λc. The corresponding cen-
tered mean supervector F̃ is generated by concatenating all the F̃c

together:

F̃c =

PL
t=1 P (c|yt, λ)(yt − µc)PL

t=1 P (c|yt, λ)
. (3)

The centered GMM mean supervector F̃ can be projected as fol-
lows:

F̃ → Tx, (4)

where T is a rectangular total variability matrix of low rank and x
is the so-called i-vector [2]. Considering aC-component GMM and
D dimensional acoustic features, the total variability matrix T is a
CD ×K matrix which can be estimated the same way as learning
the eigenvoice matrix V in [18] except that here we consider that
every utterance is produced by a new speaker [2].

Given the centered mean supervector F̃ and total variability ma-
trix T, the i-vector is computed as follows [2]:

x = (I + TtΣ−1NT)−1TtΣ−1NF̃ (5)

where N is a diagonal matrix of dimension CD×CD whose diag-
onal blocks are NcI, c = 1, · · · , C and Σ is a diagonal covariance
matrix of dimension CD × CD estimated in the factor analysis
training step. It models the residual variability not captured by the
total variability matrix T [2]. Covariance Σ is also updated itera-
tively.

2.2. Statistics calculation in the generalized i-vector framework

In the generalized i-vector framework [13], the zero-order statistics
and centered mean supervector for the jth utterance are calculated
as follows:

Nc =

LX
t=1

P (c|zj
t, λ̂) (6)

F̃c =

PL
t=1 P (c|zj

t, λ̂)(yj
t − µ̂c)PL

t=1 P (c|zj
t, λ̂)

(7)

µ̂c =

PJ
j=1

PL
t=1 P (c|zj

t, λ)ytPJ
j=1

PL
t=1 P (c|zj

t, λ)
. (8)

where c = 1, · · · , C is the new token index and P (c|zj
t, λ̂) is the

posterior probability for the jth utterance’s feature vector at time
t on the cth token. Note that the feature (zt) used to calculate the
posterior probability P (c|zt, λ̂) and the feature (yt) for cumulating
the first-order statistics Fc are not necessarily the same. The global
mean µ̂c is computed using all the training data in the same way as
the mean parameter estimation in GMM.

Fig. 1. The histogram of the 1st and 100th dimension of the cen-
tered mean supervector F̃ in the NIST SRE 2005 database.

Fig. 2. The histogram of the 1st and 100th dimension of the cen-
tered mean supervector F̃ in the short duration RSR 2015 database.

2.3. The proposed Mixture of Gaussian factor analysis

From Fig.1 and Fig.2, we can see that in real data the centered mean
supervector F̃ may not be Gaussian distributed, especially in the
short duration scenario. There are certain number of utterances that
have very small zero order statistics on a particular dimension which
generate the high peak in the histogram. Therefore, we use the mix-
ture of Gaussians to better fit the residual noises.

In standard factor analysis, the ith dimension of the jth

utterance’s mean supervector F̃ij can be considered as the re-
construction using the ith row of T and the jth utterance’s i-vector
xj. The residual that cannot be represented by T is described as a
single gaussian variable εij .

F̃ij = Tixj + εij (9)

The corresponding generative model is defined the same way as in
[19], where Ni,j denotes the corresponding zero-order statistics:

P (xj) = N (0, I), P (F̃ij |xj) = N (Tixj,
σi

2

Nij
) (10)

In the Mixture of Gaussian factor analysis, we apply a mixture
of Gaussians with K components to describe the residual noises.

P (xj) = N (0, I), P (F̃ij |xj) =

KX
k=1

πikN (Tixj,
σik

2

Nij
)

(11)
The weight for the ith dimension and the kth component is denoted
as πik. Considering the joint likelihood of F̃ and x for all those J
utterances, we can derive the objective function as follows:

ψ = −
JX

j=1

xt
jxj

2
+

X
ij

log(

KX
k=1

πikN (Tixj,
σik

2

Nij
)) (12)

Let’s denote a hidden variable γijk as the posterior probability of
the ith dimension of the jth utterance on the kth MoG component:
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Fig. 3. The inverse covariance 1/σ2
ik of all the dimensions

(36*1024) for two components trained by the RSR 2015 dataset.

Fig. 4. The inverse covariance 1/σ2
ik of the first 10000 dimensions

for two components trained by the NIST SRE dataset.

γijk =
πikN (Tixj,

σik
2

Nij
)PK

k=1 πikN (Tixj,
σik

2

Nij
)

(13)

Using the EM algorithm to solve the maximization problem of
equation (12), we can get the following solution.

E(ψ) ≈ −
JX

j=1

xt
jxj

2
+

X
ij

KX
k=1

γijk(log(πik) (14)

−1

2
log(

2πσ2
ik

Nij
)− Nij(F̃ij −Tixj)

2

2σ2
ik

)

nik =

JX
j=1

γijk (15)

πik =
nikP
k nik

(16)

σ2
ik =

1

nik

JX
j=1

γijkNij(F̃ij −Tixj)
2 (17)

Σ−1
i,j =

KX
k=1

γijk

σ2
ik

(18)

xj = (I + TtΣ−1
j NjT)−1TtΣ−1

j NjF̃j (19)

After several iterations, the MoG factor analysis model is
trained. If the mixture number K is 1, then γijk is always 1 and

Fig. 5. The MoG component weight πik of the first 10000 dimen-
sions for two components trained by the NIST SRE dataset.

Fig. 6. The inverse covariance 1/σ2
ik of the first 200 dimensions for

two components trained by the NIST SRE dataset.

the proposed MoG i-vector is exactly the standard factor analysis.
Therefore, we can see that the standard factor analysis is a special
case in our MoG factor analysis. By increasing the MoG size K,
more complex residual noise patterns can be described.

We propose two methods for the MoG i-vector extraction.
Method 1: Since γijk is hidden for testing utterances, method
1 adopts equation (13)-(19) for 3 iterations and output the MoG
i-vector based on the estimated γijk.

Method 2: In our speaker verification tasks, if the zero-order
statistics are close to 0, then the corresponding first-order statistics
can be considered as invalid data. If we use two MoG components
(K = 2) to fit the residual noises (as shown in Fig. 3 and Fig.
4, the first one associated with the invalid data would have very
small variance σ2

ik and the second component would have normal
range of variance to fit the valid data. Therefore, method 2 assumes
all testing data come from the second component and we only use
the second component to construct the i-vector. Since no iteration is
required here, the computational cost is the same as the conversional
i-vector extraction.

By comparing Fig. 3 and Fig. 4, we can find out that more
dimensions in the RSR 2015 experiment have high inverse covari-
ances which might be due to the short speech duration and small
zero-order statistics. Fig. 4 and Fig. 5 show that in the NIST SRE
experiment, the weights for most dimensions are around 0.5 except
a few dimensions where their inverse covariances are high. There-
fore, as shown in Fig. 6 and Fig. 1, if the zero-order statistics of
a particular token is sufficient and the corresponding dimensions of
the centered mean supervectors are Gaussian distributed, the weight
of two components are very similar; and vice versa.
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Table 1. Performance of the proposed methods for the 2010 NIST
SRE task female part condition 5

System GMM MoG Extraction
EER%

norm minDCF
ID size K method 08 10
1 256 1 baseline 1.69 0.105 0.308
2 256 2 1 1.42 0.105 0.280
3 256 4 1 1.64 0.102 0.348
4 1024 1 baseline 1.98 0.087 0.210
5 1024 2 1 1.70 0.089 0.227
6 1024 2 2 1.64 0.078 0.193
7 fuse id 4 and id 6 1.69 0.079 0.182

2.4. The backend

After MoG i-vectors are extracted, length normalization and simpli-
fied PLDA [10] are adopted as the backend. The PLDA training and
scoring is exactly the same as the conversional i-vector baseline.

3. EXPERIMENTAL RESULTS

3.1. Text independent speaker verification on NIST SRE 2010

We first conducted experiments on the NIST 2010 speaker recogni-
tion evaluation (SRE) corpus [20] for the text independent speaker
verification task. Our focus is the female part of the common condi-
tion 5 (a subset of tel-tel) in the core task. We used equal error rate
(EER) and the 2008 and 2010 normalized minimum decision cost
value (norm minDCF) as the metrics for evaluation [20]. We adopt
the hybrid-GMM-hybrid feature level fusion strategy in [13]. For
cepstral feature extraction, a 25ms Hamming window with 10ms
shifts was adopted. Each utterance was converted into a sequence
of 36-dimensional feature vectors, each consisting of 18 MFCC co-
efficients and their first derivatives. For phonetic feature extraction,
we employed an English phoneme recognizer [21] to perform the
voice activity detection (VAD) and output the frame level mono-
phone states posterior probability. After log, PCA and MVN, the
resulted 52 dimensional tandem features are fused with MFCC at
the feature level to get the 88 dimensional hybrid feature [13]. Fea-
ture warping is applied to mitigate variabilities.

The training data for NIST 2010 task include Switchboard II
part1 to part3, NIST SRE 2004, 2005, 2006 and 2008 corpora on the
telephone channel. We trained two gender-dependent GMM UBM
models with 256 and 1024 mixture components, respectively. The
sizes of i-vectors and the dimension of speaker-specific subspace
in PLDA are 600 and 150, respectively. Simple weighted linear
summation is adopted here as the score level fusion.

From Table 1 system id 1-3, we can observe that using a mix-
ture of two Gaussians to fit the residual noises outperforms the sin-
gle Gaussian standard factor analysis by 10% relatively in terms of
EER and 2010 norm minDCF. While further expanding the MoG
model (K=4) does not help which might be due to the two mode
characteristics of the centered mean supervectors as shown in Fig.
1. Furthermore, by comparing the results of system id 4-6, we can
find out that MoG i-vector extraction method 2 performs better than
extraction method 1 and the single Gaussian factor analysis base-
line. This might be because extraction method 2 only replies on
the second component which is trained by the valid data with suf-
ficient zero-order statistics. Finally, by fusing the MoG i-vector
system (id6) with the i-vector baseline (id4), the overall system’s
2010 norm minDCF is further reduced to 0.18.

3.2. Text dependent speaker verification on RSR 2015 part 1

For the text dependent speaker verification task, we used the Part I
female portion of the RSR2015 database as our evaluation dataset

Table 2. Performance on the development set of Part I for different
definitions of target and non-target trials in terms of EER, old cost
and new cost (EER/08 norm min DCF/10 norm min DCF)

Speaker Target Imposter MoG K=2 MoG K=1
Text T F T F extract method 2 baseline

Trials

tar non - - 0.76%/0.05/0.3 1.07%/0.067/0.3
tar - non - 6.08%/0.311/0.8 6.96%/0.357/0.8
tar - - non 0.12%/0/0 0.19%/0.01/0.1

Table 3. Performance on the evaluation set of Part I for different
definitions of target and non-target trials in terms of EER, old cost
and new cost (EER/08 norm min DCF/10 norm min DCF)

Speaker Target Imposter MoG K=2 MoG K=1
Text T F T F extract method 2 baseline

Trials

tar non - - 0.24%/0.01/0.1 0.41%/0.02/0.1
tar - non - 3.97%/0.195/0.6 4.88%/0.239/0.7
tar - - non 0.05%/0/0 0.11%/0/0

[22]. RSR 2015 is indeed a short duration database which is suit-
able to test the performance in the short duration scenario. In the
RSR2015 database, the number of speakers in the background, de-
velopment and evaluation sets are 47, 47 and 49, respectively. We
only adopt the 36 dimensional MFCC as our features here. We used
the same UBM and PLDA configuration as for our text independent
experiments but the UBM, i-vector as well as the PLDA models that
we tested were trained on the Part I background data. This consists
of parallel recordings of 30 TIMIT phrases uttered by 47 female
speakers, each of whom participated in 9 recording sessions on 3
different recording devices. We used the same development and
evaluation data in [22] to demonstrate the system performance and
we did not use the development data for training.

The number of trials for each of the four text dependent speaker
verification conditions on the part I of the RSR 2015 database is
shown [22]. We can see that only the target speaker uttering the true
lexicon content is considered as the target trial, the other cases are
all non-target trials. In order to show the results for all three types of
non-target trials, we evaluate the system performance separately for
each type of trials the same way as in [22]. The gender-dependent
GMM UBM size, the i-vector dimension and the PLDA speaker-
specific subspace rank are 1024, 400 and 150, respectively.

Performance on the development and evaluation sets of Part I
for different definitions of target and non-target trials are shown in
Table 2 and 3. We can see that for all three sets of trials, the pro-
posed MoG i-vector method outperforms the i-vector baseline by
more than 13% relatively. Especially on the evaluation set, we ob-
serve a larger improvement (close to 20% relatively) compared to
the NIST SRE 2010 task. This might be due to the nature of data
sparsity in the short duration speaker verification task and more di-
mensions are affected by the insufficient zero-order statistics.

4. CONCLUSIONS

This paper presents a mixture of Gaussian factor analysis based rep-
resentation framework for speaker verification. Due to the sparsity
of the frame level posterior probability and the short duration char-
acteristics, some dimensions of the mean supervector may not be
Gaussian distributed. Therefore, we extend the standard factor anal-
ysis by replace the single Gaussian with a mixture of Gaussians to
better represent the residual noises. If the MoG size equals to 1,
then the MoG factor analysis is exactly the same as the conver-
sional factor analysis. If the MoG size is greater than 1, then the
proposed MoG factor analysis model has the capability to represent
more complex residual noises and therefore achieves better perfor-
mances on the speaker verification tasks.
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