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ABSTRACT

In this paper we investigate the use of noise-robust features
characterizing the speech excitation signal as complementary
features to the usually considered vocal tract based features
for Automatic Speech Recognition (ASR). The proposed
Excitation-based Features (EBF) are tested in a state-of-the-
art Deep Neural Network (DNN) based hybrid acoustic model
for speech recognition. The suggested excitation features ex-
pand the set of periodicity features previously considered
for ASR, expecting that these features help in a better dis-
crimination of the broad phonetic classes (e.g., fricatives,
nasal, vowels, etc.). Our experiments on the AMI meeting
transcription system showed that the proposed EBF yield a
relative word error rate reduction of about 5% when com-
bined with conventional PLP features. Further experiments
led on Aurora4 confirmed the robustness of the EBF to both
additive and convolutive noises, with a relative improvement
of 4.3% obtained by combinining them with mel filter banks.

Index Terms— neural networks, automatic speech recog-
nition, speech excitation signal

1. INTRODUCTION

Recent and promising studies in Deep Neural Networks
(DNN) have shown [1] that they have the ability to clearly
outperform the standard Gaussian Mixture Model (GMM)
approach for acoustic modeling in Automatic Speech Recog-
nition (ASR). Most of the works in feature extraction over the
past decades were however carried out in the frame of GMM-
based modeling, and features were designed specifically in
that context.

The two most popular feature extraction schemes are
probably the Mel Frequency Cepstral Coefficients (MFCCs,
[2]) and the Perceptual Linear Prediction (PLP, [3]) fea-
tures. Recently, the Power Normalized Cepstral Coefficients
(PNCCs, [4]) have also received a particular attention due to
the robustness of their performance in GMM-based acoustic
modeling. Various other types of features have been pro-
posed in the literature. Some are based on auditory models
(e.g. [5]). Some others aim at replacing the power Fourier
spectrum by alternative representations of the vocal tract re-
sponse. These include the Minimum Variance Distortionless

Response (MVDR, [6]) or Group Delay-based features [7, 8].
All these features have been relatively extensively studied

in ASR systems based on the use of Hidden Markov Mod-
els (HMM) coupled with GMM. However recent progress has
been made in the use of DNNs to model the HMM state pos-
teriors. These advances have also opened new perspectives in
feature extraction. The use of DNNs indeed does not imply
any assumption about the correlation between the features or
about the Gaussianity of their distributions. Our preliminary
experiments indicated that features which were designed for
robust GMM-based ASR no longer outperform simple fea-
tures such as Mel-log filter banks (FBANK). Moreover, they
also showed that combinations between these features do not
bring any significant improvement in ASR (if any). We be-
lieve that this is because the great majority of feature extrac-
tion schemes rely on a representation of the same informa-
tion: the vocal tract filter. The focus has therefore now moved
towards finding features which are complementary with spec-
tral envelope-based representations.

Very few studies have focused on the use of excitation-
based features for ASR. The first attempt was made by Thom-
son [9, 10] who proposed the use of two voicing measures:
an auto-correlation based measure of periodicity and the jitter
to characterize the inter-frame pitch variation. When com-
bined to cepstral features, a relative reduction of 40% of the
string error rate was obtained on a connected digit recogntion
task. In [11], Zolnay et al. studied three different voicing
features as additional acoustic features for continuous speech
recognition. These features were extracted from the harmonic
product spectrum, the autocorrelation and the average magni-
tude difference function. Relative improvements up to 6%
were achieved on a large-vocabulary task relatively compared
to using MFCCs alone. Finally, in [12], Ishizuka et al. pro-
posed a method which decomposes the speech signal into pe-
riodic and nonperiodic components using comb filters inde-
pendently designed in various subbands.

In this paper, we propose robust excitation-based features
and investigate how they can be helpful in improving ASR
performance on various databases. The set of already sug-
gested features is expanded by considering robust pitch track-
ing algorithms, and voice quality measurements. Experiments
are conducted on two databases, well established for noise-
robust ASR: AMI meeting transcription system and Aurora
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4. Results support the arguments that excitation-based fea-
tures provide complementary information to the vocal tract-
based features, while it is possible to extract these features in
a robust way, even in very noisy environments as in the two
databases we considered.

The paper is structured as follows. Section 2 describes
the proposed robust excitation-based features. The results of
our experiments are discussed in Section 3. Section 4 finally
concludes the paper.

2. ROBUST EXCITATION-BASED FEATURES

According to the mechanism of voice production, speech is
considered as the result of a glottal flow (also called source or
excitation signal) filtered by the vocal tract cavities [13]. This
led to the well-known source-filter model which motivates the
present study: source and filter features reflect different phys-
iological characteristics of speech. They are expected to be
complementary, which could be turned into advantage in an
ASR system.

Speech excitation usually refers to the glottal flow signal.
The glottal flow has been already shown to be useful in var-
ious speech processing applications [14, 13]. However these
works were conducted in relatively well-controlled situations
in which the detrimental effects of the noise are quite lim-
ited. A reliable and accurate estimation of the glottal flow
in adverse conditions is still an open and challenging problem
[15]. Nevertheless, it is possible to extract relevant features of
the excitation signal without requiring an explicit estimation
of the glottal flow. We now describe the proposed Excitation-
based features (EBF) which we will use for our ASR experi-
ments.

Excitation-based features can be extracted in the time, the
frequency or the cepstral domain. They can also be computed
directly from the speech signal, or from the Linear Predici-
ton (LP) residual signal, obtained by inverse filtering after
removing the contribution of the spectral envelope. The ad-
vantage of working with the LP residual is that it exhibits rel-
evant characteristics of the glottal source [13] while circum-
venting complex and noise-sensitive operations (e.g. pitch-
synchronous analysis) involved in the majority of glottal flow
estimation techniques [13, 15].

In the time domain, a popular and very simple periodic-
ity feature is the zero-crossing rate (ZCR) which indirectly
measures the degree of voicing from the speech signal. An-
other common approach to quantify periodicity relies on the
auto-correlation (AC) function of the speech signal [9, 11] by
measuring the relative height of the maximum of this function
in the plausible pitch range. The Average Magnitude Differ-
ence Function (AMDF) can be formulated as a function of
the AC function. The relative depth of the minimum AMDF
valley in the plausible pitch range has been used for ASR in
[11] and Voice Activity Detection (VAD) in [16]. The nor-
malized LP error was proposed in [17] for VAD purpose. It

quantifies how well an auto-regressive model fits the signal,
and lower errors are expected in voiced sounds. Finally, high-
order statistics of the LP residual have also been proposed in
the literature [17, 18]. The kurtosis of the LP residual has
been used for VAD purpose in [17] and as a measure of the
sparsity of the excitation in [19] to characterize the disconti-
nuities at the glottal closure instants. As for the skewness of
the residue, it captures the asymmetry of the excitation and is
related to the polarity of the speech signal [18].

In the spectral domain, the Harmonic Product Spectrum
(HPS), defined as the product of R frequency-shrunken repli-
cas of the speech amplitude spectrum, has been proposed for
ASR and VAD respctively in [11] and [16]. A HPS-based pe-
riodicity measure consists of the maximum HPS peak in the
plausible pitch range. We also employ two features extracted
from the Summation of the Residual Harmonics (SRH) algo-
rithm [20], which was shown to be one of the most robust
pitch tracker. This method is based on the spectrum E(f) of
the residual excitation and the SRH value is computed as:

SRH = argmax
f

(E(f)+

Nharm∑
k=2

[E(k · f)− E((k − 1

2
) · f)]),

where the number of harmonics Nharm is fixed to 5 as
in [20], and where f is varied in the plausible pitch range.
SRH criterion differs from HPS in mainly two aspects: i) it
exploits the residual signal, which allows to minimize the ef-
fects of both the vocal tract resonance and of the noise [20],
ii) it involves also interharmonics. The two features used in
this work differ by the energy-normalization or not of E(f)
for each frame.

Finally, as cepstral-domain feature, the Cepstral Peak
Prominence (CPP) was originally proposed in [21] for the
prediction of breathiness ratings. CPP is a measure of the
amplitude of the cepstral peak corresponding to the funda-
mental period, normalized for overall signal amplitude.

In total, 10 excitation-based features are considered in the
rest of this paper, and they will be referred to as EBF: the
ZCR, the height of the AC function, the depth of the AMDF,
the normalized LP error, the kurtosis and the skewness of the
LP residual, the maximum of the HPS, the 2 SRH-based mea-
surements and CPP. In all cases, the plausible pitch range is
fixed to [60 − 400]Hz. All implementations are conform to
the descriptions provided in the original publications. Note
that the implementations of CPP and SRH are available from
the COVAREP project [22].

3. EXPERIMENTAL RESULTS

In a first experiment, we investigated which of the proposed
EBF were the most relevant by assessing their class separa-
bility (Section 3.1). The usefulness of the proposed EBF was
then studied for two very different ASR tasks. One was based
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on the Augmented Multi-party Interaction (AMI) data set, i.e.
AMI meeting transcription task (Section 3.2). This is a multi-
accent, spontaneous speech recognition task with large train-
ing data and large vocabulary. The other is the Aurora 4 noise
robust speech recognition task with small training data and
medium vocabulary size (Section 3.3).

3.1. Class Separability of the proposed features

Before any use in a complete ASR system, we first performed
an objective assessment of the proposed EBF in terms of their
intrinsic discrimination power. For this purpose, the met-
ric we used is Fisher’s class separability. This measure is
used in Linear Discriminant Analysis (LDA) and considers
the ratio of the variance between the classes to the variance
within the classes. Phones are here used as classes. The
phone boundaries were obtained by forced alignment using
the Train&Align tool [23]. As speech material, we used 3000
randomly-chosen utterances from the Aurora4 database (see
Section 3.3) in clean conditions. We also simulated noisy con-
ditions by artificially adding a babble noise (taken from the
Noisex92 database) at 0 dB SNR.

The results are reported in Figure 1 and reflect the relative
improvement in class separability brought by each feature in-
dividually when combined with 13-dimensional conventional
PLP features. Except for the residual skewness, the proposed
EBF add a sensible increase of class separability varying from
1.3% to 7.5% in clean conditions. A similar observation holds
in the noisy condition, where ZCR even reaches a relative im-
provement of 8.6% alone. When the 10 proposed EBF are
combined with PLP, the total increase of class separability is
respectively of 22.8 and 27.3% in clean and noisy conditions.
These first results show evidence that the proposed EBF have
the potential to enhance ASR performance both in controlled
and adversed environments.
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Fig. 1. Relative improvement (in %) in class separability
brought by each of the proposed EBF.

3.2. AMI Meeting Transcription Experiments

Our first ASR experiment was carried out on the AMI corpus.
This corpus [24] was collected for research and development
of technology that will help groups interact better. As part of

this corpus close-talking and far-field microphones with high
quality transcriptions are available. Numerous previous stud-
ies have reported results on this corpus [25, 26, 27, 28]. In
this work only the far-field microphones, multiple distant mi-
crophone data (MDM) was used. Additionally overlapping
speech data was removed. This yielded about 59 hours of
data. In addition to the AMI corpus, 52 hours from the ICSI
corpus [29] and 10 hours from the NIST corpus [30] were
used. ICSI meeting data was recorded in the conference room
in ICSI. Beamforming is performed using the BeamformIt
tool [31] to yield a single audio channel 1.

Four meetings are held back from the AMI data to give an
AMI dev and eval sets, each with two sets of meetings and 4
speakers per meeting. As overlapping speech is not evaluated
this yielded a total test set duration of about 5.29 hours. The
total available data for training, after removing the 4 meet-
ings is about 121 hour-long data. This is the same configu-
ration and held-out test sets as those used in [26]. Automatic
segmentation is used for evaluation.

The acoustic models based on hybrid systems were con-
structed as follows. A DNN with four hidden layers and 1000
nodes per layer was trained. Nine consecutive frames were
concatenated as input features of the DNN. This latter was
trained in a supervised and discriminative fashion layer by
layer in pretraining [33], followed by a fine-tuning with sev-
eral epochs until the frame accuracy converges in the cross-
validation set. The alignment for the targets was obtained
from a well-trained Speaker Adaptive Training (SAT) Tandem
system. 6000 distinct states were clustered from the deci-
sion tree in the GMM-HMM system, which were further used
as targets in the training of DNN. Two sets of basic features
were used: 13-dimensional PLP and 26-dimensional mel fil-
ter banks (FBANK), together with their first, second and triple
deltas appended. Another two sets of compound features were
constructed by concatenating the 10-dimensional EBF with
PLP or FBANK features, again with first, second and triple
deltas appended. Cepstral mean and variance normalization
at the speaker level were applied to all features before being
fed into the DNN.

The 3-gram language model used in this paper is the same
as the one used in [26]. These used a 41K word-list and were
trained on a variety of sources including the AMI, ICSI, NIST
and ISL corpora transcriptions, Callhome, Switchboard, Gi-
gaword and web data collected by the University of Washing-
ton. Language model interpolation weights were tuned on the
AMI dev set. In total, 2.5G words of language model training
data were used.

Table 1 gives the experimental results of the speaker-
independent (SI) hybrid system. The Word Error Rate (WER)
from the output of confusion network decoding is reported.
Two main conclusions can be drawn from these results: i)
FBANK consistently outperforms PLP; ii) an improvement is

1Currently there is no Wiener filtering in the front-end processing, as used
for example in [32], which should yield performance gains.
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obtained by combining the proposed EBF to conventional vo-
cal tract-based features. An average relative WER reduction
of respectively 4.77% and 1.64% is achieved when EBF are
used jointly with PLP and FBANK.

Table 1. WER results (in %) of on the AMI corpus
MLP feature WER

dev eval
PLP 35.7 35.6

+EBF 34.1 33.8
FBANK 34.0 33.0
+EBF 33.3 32.6

3.3. Aurora 4 Experiments

In our second ASR experiment, the use of the proposed EBF
was investigated in the Aurora 4 task. This is a noise-robust
continuous speech recognition task with a size of vocabulary
of 5k. The Aurora 4 database is from WSJ data set in which
the additive noise and convolutional distortion has been ar-
tificially added. Two training sets were defined: the clean
training set and the multi-condition training set. The clean set
includes 7138 utterances recorded by the primary Sennheiser
microphone. The multi-conditional training set consists of
the same utterances from the primary Sennheiser microphone
and from a secondary microphone which includes convolu-
tional distortions. The multi-condition training set includes
clean condition and 6 noise conditions, i.e. airport, babble,
car, restaurant, street and train station. The Aurora 4 test data
consists of 330 utterances from 8 speakers, recorded by the
same two channels under the same clean and 6 noisy condi-
tions as in the training data. This thus leads to a total of 14
test sets.

In this work the multi-condition training set was used for
system training. As conventional vocal tract-based features,
we used 25-dimensional FBANK as they provided the best
performance in Section 3.2. The static feature vectors were
spliced in time taking a context of ±3 frames. Then the linear
discriminant analysis (LDA) was used to reduce the dimen-
sion of the spliced features from 175 to 75. It was followed by
a global semi-tied covariance (STC) matrix for de-correlation.
The DNN hybrid system with SAT was used as an acous-
tic model. For each speaker and noise condition, a global
Constrained Maximum Likelihood Linear Regression (CM-
LLR)transform was trained and cascaded with the LDA+STC
transforms to account for speaker and noise variability. This
transformed feature vector was concatenated with the pro-
posed EBF as input to the DNN. Again, the features were
spliced in time with a window of ±5 frames. It was followed
by a global mean and variance normalization. The DNN used
in this work contains 4 hidden layers and 2000 nodes for
each hidden layer. The alignments for the target output were
from a SAT based GMM-HMM system with about 3k tied

context dependent states. The Deep Belief Network (DBN)
based pre-training was used to initialize the DNN. Both cross-
entropy (XEnt based training and the Segmental Minimum
Bayes Risk (SMBR) based sequence training were used for
fine-tuning. The results are given in Table 2.

Table 2. WER (in %) results for Aurora 4
channel noise FBANK FBANK+EBF

XEnt SMBR XEnt SMBR
1 clean 3.72 3.70 3.87 3.75

airport 5.81 5.49 6.07 5.55
babble 6.02 5.47 6.13 5.51

car 4.28 4.24 4.24 4.15
restaurant 8.43 7.83 8.03 7.62

street 8.03 7.08 7.92 6.80
train 7.29 6.78 7.38 6.63

2 clean 6.58 6.05 5.57 4.89
airport 17.62 16.33 16.93 14.89
babble 18.14 17.04 17.65 16.20

car 9.47 8.52 8.09 7.36
restaurant 20.98 19.71 21.54 20.23

street 20.33 18.91 20.53 18.53
train 20.13 18.65 19.72 17.44

avg. 11.20 10.41 10.98 9.96

Three main observations can be drawn from Table 2: i)
SMBR clearly outperforms XEnt as training method for fine-
tuning; ii) Corroborating the results from Section 3.2 on a
very different task, the proposed EBF yield also an improve-
ment when combined with FBANK. The best WER obtained
is 9.96% and is possible thanks to a relative reduction of 4.3%
when using EBF in complement with FBANK; iii) Interest-
ingly, the proposed EBF are seen to be on overall helpful in
both additive and convolutive (channel 1 vs. channel 2) noise,
which further supports their noise robustness. Finally, it is
worth noting that our attempts to combine MFCC, PLP or
PNCC with FBANK did not result in any relevant improve-
ment (when any) which confirms the need to look for com-
plemenatry features, such as the proposed EBF.

4. CONCLUSION

This work investigated the use of excitation-based features
to complement conventional vocal tract-based acoustic fea-
tures to improve the performance DNN-based ASR systems.
Ten robust excitation-based features (EBF) were proposed
and were evaluated on two very different ASR tasks: the
AMI meeting transcription and Aurora 4. The experimen-
tal results showed that the proposed EBF provides a relative
improvement varying between 1.6 and 4.8% when they were
combined with standard PLP or FBANK features. Further-
more, this improvement was observed consistently for the
two ASR tasks and across both additive and convolutive
noisy conditions.
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