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ABSTRACT 

For many years, filterbanks have been widely used as one step 
of frontend feature extraction for Automatic Speech Recognition 
(ASR). In this paper, we propose a unified framework for ASR 
frontends, by first moving the nonlinear amplitude scaling, and 
then combining the filterbank weights with the cosine basis 
vectors. As part of this framework, we also show that the delta 
terms used to encode feature dynamics can also be viewed as one 
realization of a set of “unified” basis vectors over time. With this 
framework, frontends can be developed, analyzed and evaluated 
through their basis vectors over frequency and time.  

Index Terms— Filterbank, spectro-temporal, unified, basis 
vector, frontend 

1. INTRODUCTION 

For many years, filterbanks, implemented as weighted sums of 
FFT magnitudes, are widely used as a frontend processing step 
for ASR systems. Figure 1(a) is a block diagram of the 
filterbank-based feature extraction approach. One commonly 
used version of this approach is to compute Mel Frequency 
Cepstral Coefficients (MFCCs) [1]. The MFCC features are 
computed using a set of triangular bandpass filters 
approximately logarithmically spaced above 1 kHz to map the 
short time power in the Hertz domain to the Mel domain. In 
recent years, various enhanced MFCC algorithms have been 
developed. In [2], a Smooth MFCC (SMFCC) algorithm 
incorporates the pitch frequency information in building the 
filterbank, and in [3], the spectral envelope of the voiced frames 
is enhanced to improve the noise-robustness of the MFCCs.  

To extract features from the amplitude-scaled output of the 
filterbank, the Discrete Cosine Transform (DCT) is computed 
using “half” cosine multiple basis vectors. The feature 
calculation using these “regular” cosine basis vectors is given by 
equation (1) as: 
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where ܥܶܥܦሺ݅ሻ is the ith DCT coefficient, N is the total number 
of filter channels, P(j) is the output power of the jth channel, and 
a( ) is the amplitude scaling function. The DCT coefficients are 
similar to the principal components of the spectrum. In [4], a 
Distributed DCT method is presented to remove the correlation 
between filterbank outputs more completely, which leads to a 
more compact set of cepstral features. 

As pointed out in [5,6,7,8], the delta and acceleration terms 
of the DCTCs greatly help to improve the recognition accuracy 
since these time derivatives capture the dynamic behavior of 
adjacent coefficients. The delta terms are computed through 
equation (2), where ߆ is the window length in frames, and higher 
order terms are the deltas of lower order ones. 

												∆ሺݐሻ ൌ
∑ ௧ାఏܥܶܥܦሺߠ െ ௧ିఏሻܥܶܥܦ
௵
ఏୀଵ

2∑ ௵ଶߠ
ఏୀଵ

																											ሺ2ሻ 

 
Fig.1. Block diagrams of the filterbank-type frontend (a), the unified 
structure (b), and the spectro-temporal system (c) in [9].  

Spectro-temporal frontends provide much more detailed 
representations of the temporal patterns in speech than the time 
derivative terms. The work in [9] proposes non-uniform time 
resolution within time blocks of the static features using a set of 
Discrete Cosine Series (DCS) expansion, and in [10], parallel 
and hierarchical structures are developed based on a temporal 
filterbank and in [11], two-dimensional Gabor features are 
obtained to capture the diagonal spectro-temporal patterns. 

In our work, we propose a unified framework for ASR 
frontends, which is built upon a set of unified time-frequency 
basis vectors. The nonlinear amplitude scaling is moved to 
immediately after the FFT magnitude step. Under this 
framework, frontend systems, such as (but not limited to) [9, 11], 
can be characterized entirely through the unified basis vectors, 
which gives a common yardstick for analyzing frontends. We 
also discuss other potential benefits of this perspective.  
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2. A UNIFIED FRAMEWORK 

2.1. Moving the amplitude scaling to the ‘front’ 

It’s interesting to note that if we move the nonlinear amplitude 
scaling in Figure 1(a) to before the filterbank, the filterbank 
weights can then be combined with the “regular” half cosine 
basis vectors by a simple matrix multiplication. However, this 
modification should be justified by inherent auditory properties 
as well as ASR experiments. 

Physiologically, different frequency components in a 
travelling wave cause maximum displacement of the basilar 
membrane at different positions. The membrane vibration “fires” 
the neurons through hair cells, and the firing rate as a function of 
sound intensities is modeled by the nonlinear amplitude scaling. 
A commonly used nonlinearity is the logarithmic compression, 
as in the Seneff model [12]. More sophisticated auditory models 
such as [13], indicate that this perceptual loudness mapping can 
be better approximated by a power-law function [14], and should 
be frequency-dependent due to the sensitivity of the hair cells. 
Directly mapping the original spectrum with the nonlinearity 
inherently eliminates this frequency distinction. 

However, we place the nonlinearity before the filterbank 
since (1) frequency-independency simplification is widely made 
and experimentally justified by ASR systems, such as MFCC 
and PLP [15], which uses an equal-loudness curve to compensate 
for the simplification, (2) based on (1), there is no compelling 
evidence as to where the nonlinearity should be placed, (3) 
experimentally, we will show that it does not affect ASR 
performance much if the nonlinearity is moved to before the 
filterbanks, and (4), as discussed below it allows the system 
unification which brings benefits. 

2.2. Unified basis vectors 

First, with the amplitude scaling moved, it’s straightforward to 
create a set of “unified” static basis vectors by a matrix product. 
Suppose the rows of the matrix W contain the filterbank channel 
response, and the rows of ࢍࢋ࢘ࡲࢂ  contain the regular cosine 
basis vectors, the unified version ࢛ࡲࢂ is given in Eq. (3), and 
the amplitude-scaled FFT spectrum is weighted by	࢛ࡲࢂ  to 
obtain the static DCTCs. 
࢛ࡲࢂ																																			 ൌ  ሺ3ሻ																																			ࢃࢍࢋ࢘ࡲࢂ

In the standard MFCC framework, the dynamic (∆) features 
are computed from the static DCTCs, using Eq.(2). Here we 
show that the ∆ terms can also be computed using basis vector 
manipulations. From Eq.(2), to compute any nth order 
differential term, its basis vector with respect to the previous 
lower order (neglecting the constant denominator) is given by 
࢜࢈ ൌ ሾെߠ,െߠ  1,… ,0,1, … ሿߠ , where ߠ  is the window 
length. If we view ࢜࢈ as a discrete signal, with each element 
representing both the amplitude and the time index (i.e. [-2,-
1,0,1,2] gives a signal whose magnitude is -2 at index -2, and -1 
at index -1, etc.), then, the nth order basis vector with respect to 
the DCTCs (i.e. absolute time) can be computed as: 

ࢀ࢜࢈																										 ൌ ࢜࢈ ⊛ ࢜࢈ …⊛  ሺ4ሻ																											࢜࢈

where ⊛ is the convolution operator, and each ࢜࢈  is the ith 
order basis vector in terms of its previous lower order. Thus, 
putting all 	ࢀ࢜࢈ , including the zeroth order, into rows of a 

unified dynamic basis vector matrix ࢛ࢀࢂ, the final feature 
matrix F at the output is given by Eq.(5), where	ܽሺࢄሻ is the 
amplitude-scaled FFT spectrum. 

ࡲ																											 ൌ ࢛ࢀࢂ ∙ ሾ࢛ࡲࢂ ∙ ܽሺࢄሻሿ்																								ሺ5ሻ 

2.3. Discussion 

In this section, we present a detailed discussion on the 
significance/applications of this unified frontend perspective, 
whose block diagram is depicted in Figure 1(b). 

First, it’s important to note that ࢛ࢀࢂ  and ࢛ࡲࢂ  in 
Eq.(5) can take on any generalized forms, though they are 
derived from a specific category of frontends. On a higher level, 
Eq.(5) shows that features can be viewed as a series of linear 
transformations of the spectrum scaled by an auditory 
nonlinearity, with optional peripheral nonlinearities in between 
(dashed blocks in the diagram). These linear transformations are 
represented by the unified basis vectors. Filterbanks (or other 
parts) exert their impact on system quality by shaping the basis 
vectors implicitly. Thus, the unified basis vectors determine the 
time-frequency properties of a frontend. In this sense, the 
scheme gives us a common “yardstick” to analyze and compare 
frontends which appear to be different or similar based on the 
properties of the unified basis vectors.  

The first example to illustrate this point is the comparison 
between the “standard” MFCC and the spectro-temporal system 
in [9], whose diagram is given in Figure 1(c). It’s important to 
emphasize that in the unified framework, both systems compute 
features in a mathematically identical manner, and the only 
difference lies in the unified basis vector forms. In [9], in 
computing the DCTCs, the ith basis vector ߶ሺ݂ሻ over frequency 
݂ is given by Eq.(6): 
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where ݃ሺ݂ሻ is a frequency warping function. In Figure 2, we plot 
the first 3 basis vectors (left) with ݃ሺ݂ሻ  set to a Mel-shape 
warping (right), and in Figure 3, we also plot the first 3 unified 
basis vectors for MFCC using a 26-channel Mel filterbank. 

 
Fig2. First 3 DCTC basis vectors (left) with an embedded Mel-shape 
warping (right) in the system of [9].  

The unified basis vectors produced by the Mel filterbank are 
less smooth than the ones generated by the Mel-shape warping. 
In Figure 2, the Mel scale is implemented in a continuous 
manner, with the envelope (BV0) representing the frequency 
resolution dg/df; however, for the case shown in Figure 3, the 
basis vectors are computed using a 26 step quantized Mel scale, 
using filter bandwidth to represent frequency resolution. Thus, 
we might expect a finer frequency resolution characterization for 
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the continuous Mel-shape warping approach, which might lead 
to a higher recognition accuracy. However, the difference should 
be small, since they are essentially two ways of implementing a 
Mel scale, as shown by the similarities in the basis vectors. 

 
Fig.3. First 3 unified DCTC basis vectors for the standard MFCC 
frontend. A 26-channel Mel filterbank is combined with regular 
cosine basis vectors. 

To obtain dynamic features, the system in [9] uses a set of 
Discrete Cosine Series (DCS) basis vectors to weight the time 
blocks of the DCTCs. The ith DCS basis vector is defined as: 

																											߰ሺݐሻ ൌ cosሾ݅ߨ ∙ ݄ሺݐሻሿ ∙
݄݀
ݐ݀
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where ݄ሺݐሻ is a time warping function. Again, the first 3 DCS 
basis vectors are plotted in Figure 4 (left) with a continuous 
Kaiser window for the dh/dt term, and in the right panel, the first 
3 differential basis vectors are presented, with BV0 refers to the 
zeroth order in both cases. 

 
Fig.4. First 3 DCS (left) and differential (right) basis vectors in 
computing the dynamic features in system [9] and MFCC. 

Clearly, the discrete differential (indicated by markers) and 
continuous DCS basis vectors are very different, both from their 
“look” and the logic used to derive them. However, as they are 
put into the same unified framework, we are able to analyze 
system properties through basis vectors. If we compare the 
zeroth order term, the DCS method encodes feature trajectories 
using a long segment of context. Speech frames near the current 
“observation point” are assigned more weight to determine the 
speech content, and those far from the center are smoothed. This 
relative importance of speech information is reflected by the 
time resolution, i.e. dh/dt in Eq.(7). However, the differential 
case uses only the block center term. Hence, the DCS method 
may provide better features for the time patterns in speech using 
non-uniform time resolution in long speech segments.  

Another system that can be analyzed in the unified 
framework is found in [11,16], where a set of Gabor filters are 
proposed to capture the Localized Spectro-Temporal Features 
(LSTFs). However, the work of [17] shows that the directionality 
of LSTFs can be obtained through weighting the spectrum by a 

set of rotated basis vectors. Thus, the LSTFs can be studied and 
evaluated by the unified framework. In [17], the basis vectors are 
tuned toward different angles, and corresponding phonetic 
recognition results are obtained to evaluate the effects. 

Potentially superior features can also be developed through 
the unified concept. As one example, the static and dynamic 
basis vector steps could be interchanged to allow the use of 
frequency-dependent dynamic basis vectors. The time 
resolution, i.e. dh/dt, built into the basis vectors for higher 
frequencies could use a more “peaky” window shape than that of 
lower frequencies, to allow higher time resolution. This modified 
framework accounts for the effects of the auditory time-
frequency trade-off, revealed by psychoacoustic [18] and 
neurophysiological [19] known facts.  

Empowered by the frontend unification approach, a higher 
level systematic unification can be envisioned, which will 
potentially push state-of-the-art speech recognition. For 
example, conceptually, a frontend should only compute static 
features, and the temporal patterns should be modeled by the 
recognizer. Indeed, human ears (the frontend) only do spectral 
analysis whereas higher levels of processing in the human brain 
(the recognizer) characterize the spectral-temporal information. 
Thus, it can be foreseen that modeling of the “hidden” spectral-
temporal patterns can be exploited by the data-driven training of 
a state-of-the-art recognizer, such as a Deep Neural Network 
(DNN), which has the power of performing “deep learning.”  

Finally, there are limitations to the unified frontend in this 
work. It is not intended to replace specific frontends, nor even 
accounts for all of them (e.g. PLP). However, for many cases, it 
reveals the essence of features with a straightforward tool, the 
unified basis vectors, as a linear transformation. Possibly more 
effective systems can be developed. For frontends which might 
not fully fall into this structure, their system properties can still 
be studied with the view presented here. Also, the filterbank and 
the regular basis vectors can still be implemented in two separate 
steps as needed, to allow various techniques, such as the Power 
Normalized Cepstral Coefficient (PNCC) algorithms [14,20] to 
be inserted. 

3. EXPERIMENTAL EVALUATION 

The goal of this section is to present the system performance 
purely in terms of the unified basis vectors built from various 
filterbanks and the system in [9]. Extensive tests were also 
conducted to determine the effects of moving the nonlinearity.  

3.1. Phonetic level recognition task 

A 39 phoneme recognition task with TIMIT was conducted. 
3696 and 1344 utterances (SA sentences removed) were used for 
training and testing respectively. 48 3-state monophone 
GMM/HMMs were trained by HTK 3.4, and a phonetic bigram 
language model was used for decoding. Throughout this 
subsection, the optimal frame length/space for frontends using 
differential dynamic basis vectors were 25ms/10ms respectively, 
and for other frontends using the DCS dynamic basis vectors, 
including the example spectral-temporal system in [9] were 
8ms/2ms. The optimal block length/space for computing DCS 
were 302ms/8ms. 26 and 40 channels were used for Mel and 
gammatone filterbank derived basis vectors respectively. The 
gammatone was implemented as in [21]. 
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In Table 1, we examine the effect of placing the amplitude 
scaling before the filterbank. 32 GMM mixtures were used. 
Logarithmic and power law functions were tested. The power 
exponent in the power law was 0.1. For the Mel and gammatone 
cases, the static and dynamic basis vectors were 12 regular 
cosine as in Eq.(1) (plus 1 log-energy) and delta/acceleration (39 
features in total). For more thorough tests, the PLP frontend was 
also implemented, though the detailed analysis of this frontend 
was not done in our proposed framework. MATLAB code to 
obtain the PLP results can be found in [22], where 16 trapezoids 
were used as the filterbank with an equal-loudness curve built 
into the weights, and the power value was 0.33. 12 static terms 
were obtained from the LPC cepstral recursion. The dynamics 
were delta and acceleration. In the baseline cases (bolded), the 
amplitude scaling was placed after the filterbanks.  

Table 1. Phonetic accuracy (%) of placing the amplitude scaling 
before/after the filterbanks 

 

Moving the amplitude scaling to before the FB results in 
only a negligible decrement in performance. Table 2 shows 
various combinations of static/dynamic basis vectors and 
numbers of dynamic terms. 13 static unified basis vectors were 
built with either filterbanks or a continuous Mel-shape warping. 
96 GMMs were used. The baselines are again bolded. A 
logarithmic nonlinearity was placed before filterbanks.  

Table 2. Phonetic accuracy (%) using different unified 
static/dynamic basis vectors 

 

First, with the same number of features, the combination of 
FFT+DCTC with Mel-shape warping and DCS cases are better 
than the bolded baselines (larger difference with 52 features). 
This is consistent with the finer frequency resolution reflected 
by the static basis vectors (compare Figure 2 and 3), and also 
better time resolution of the dynamic basis vectors (Figure 4). 
Also, note that adding more DCS basis vectors brings relatively 
significant improvements over the 39 feature cases, whereas 
more differential terms provide no improvements. This relative 
improvements again support the superiority of the non-uniform 
time resolution reflected in the unified dynamic basis vectors. 

3.2. Word level recognition task 

In this section, we report word (actually character) level 
recognition to confirm the findings with the phonetic 
experiments. 37116 utterances spoken by 78 women speakers 
from the 863 Mandarin Chinese database were  used as training 

data (about 40 hours in total), and another 5 women speakers 
(3125 utterances) were  used as a test data. 16-mixture cross-
word triphones and a 5868-word bigram model were trained for 
decoding. Throughout this section, we use character percentage 
accuracy as the evaluation measurement. 

In Table 3, we repeated the cases in Table 1 to further 
confirm the validity of moving the amplitude scaling. The setup 
parameters for the frontends were identical to those in Table 1. 
The baselines are bolded. 

Table 3. Character accuracy (%) of placing the amplitude scaling 
before/after the filterbanks 

 

These results strengthen the validity of moving the 
amplitude scaling. In Table 4, we present two pairs of 
comparisons with different static/dynamic settings. The optimal 
frame length/space for the DCS scenarios were 10ms/2ms (for 
the Mel+regular cosine case) and 25ms/2ms (for the FFT+DCTC 
with Mel warping case).  The optimal block length/space of DCS 
were 142ms/14ms for both. A logarithm scaling was placed after 
the filterbanks. Baselines are bolded. 

Table 4. Character accuracy (%) using different unified 
static/dynamic basis vectors 

 

Again, the FFT Mel warping is better than the filterbank 
Mel warping. The DCS is superior to differential dynamic basis 
vectors. We predict that with such high-dimensional features, the 
improvements would be more obvious with higher order mixture 
models, as shown in Table 2 for phonetic recognition. 

4. CONCLUSIONS AND FUTURE WORK 

In this work, we developed a unified framework by moving the 
amplitude scaling and modifying the basis vectors. Insights were 
discussed in detail using examples. Extensive experiments 
confirmed the rearrangement of the nonlinearity. Also, various 
basis vector combinations were examined to show their 
determinant impacts on the frontend performance. Advanced 
frontend features and systematic unifications for state-of-the-art 
recognition are under investigation in our ongoing work. 
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