
IMPROVING OUT-DOMAIN PLDA SPEAKER VERIFICATION USING UNSUPERVISED
INTER-DATASET VARIABILITY COMPENSATION APPROACH

Ahilan Kanagasundaram, David Dean and Sridha Sridharan

Speech Research Laboratory, Queensland University of Technology, Australia
{a.kanagasundaram, d.dean, s.sridharan}@qut.edu.au

ABSTRACT

Experimental studies have found that when the state-of-the-
art probabilistic linear discriminant analysis (PLDA) speaker
verification systems are trained using out-domain data, it sig-
nificantly affects speaker verification performance due to the
mismatch between development data and evaluation data. To
overcome this problem we propose a novel unsupervised in-
ter dataset variability (IDV) compensation approach to com-
pensate the dataset mismatch. IDV-compensated PLDA sys-
tem achieves over 10% relative improvement in EER values
over out-domain PLDA system by effectively compensating
the mismatch between in-domain and out-domain data.

Index Terms— speaker verification, PLDA, domain
adaptation, inter-dataset variability

1. INTRODUCTION

A significant amount of development data, especially in the
presence of large intersession variability, is required to de-
velop a speaker verification system. Recent studies have
found that when speaker verification is developed in one do-
main data and evaluated in another domain data, the dataset
mismatch significantly affects the speaker verification perfor-
mance [1, 2, 3]. Therefore significant amount of target do-
main data is required to develop speaker verification system
in order to achieve state-of-the-art performance. However,
it is hard to collect adequate amount of target domain data,
specially speaker labelled data in real world environments.
In recent times, researchers have been proposing several
approaches to achieve state-of-the-art speaker verification
performance if significant amount of out-domain data and
limited in-domain unlabelled is available. This problem is
defined as domain adaptation.

Recently, Garcia-Romero et at. [1] have found that the
adaptation of the PLDA parameters produces the largest
gains, and universal background model (UBM) and total-
variability matrix would not be required to estimate on
in-domain data. They have studied several supervised ap-
proaches, including fully Bayesian adaptation, approximate
maximum a posteriori (MAP) adaptation, weighted likeli-
hood [1]. Aronowitz [2] introduced inter dataset variability

compensation (IDVC) to explicitly compensate for dataset
shift in the i-vector space, which is based on nuisance at-
tribute projection (NAP) method. For IDVC estimation,
out-domain Switchboard dataset is partitioned into several
sub datasets. Recently, Garcia-Romero et at. [4] have also in-
troduced agglomerative hierarchical clustering (AHC) based
unsupervised approach for domain adaptation.

In this paper, a novel unsupervised inter-dataset variabil-
ity (IDV) is introduced in order to compensate the mismatch
between out-domain data and in-domain data. Our approach
is similar to the IDVC approach proposed by Aronowitz in [2]
but in contrast, out-domain Switchboard dataset is not re-
quired to be partition into several subsets to estimate the inter
dataset variability compensation. Recently, we have proposed
short utterance variance (SUV) approach to capture the utter-
ance variation for short utterance PLDA speaker verification
system [5, 6]. In this paper, similar idea is taken to capture the
variation between in-domain and out-domain data. The varia-
tion between in-domain and out-domain data is defined as the
outer product of difference between out-domain i-vectors and
average of in-domain i-vectors. The IDV compensation ma-
trix is estimated using Cholesky decomposition of inverse of
variation matrix. We analyse how the limited in-domain unla-
belled data that is available for IDV compensation estimation,
affects the speaker verification performance.

This paper is structured as follows: Section 2 details the
i-vector feature extraction techniques. Section 3 details the
inter dataset variability compensation approach. Section 4
explains the Gaussian PLDA (GPLDA) based speaker veri-
fication system. The experimental protocol and correspond-
ing results are given in Section 5 and Section 6. Section 7
concludes the paper.

2. I-VECTOR FEATURE EXTRACTION

I-vectors represent the Gaussian mixture model (GMM)
super-vector by a single total-variability subspace. This
single-subspace approach was motivated by the discovery
that the channel space of JFA contains information that can
be used to distinguish between speakers [7]. An i-vector
speaker and channel dependent GMM super-vector can be
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represented by,

µ = m + Tw, (1)

where m is the same universal background model (UBM)
super-vector used in the JFA approach and T is a low rank
total-variability matrix. The total-variability factors (w) are
the i-vectors, and are normally distributed with parame-
ters N(0,1). Extracting an i-vector from the total-variability
subspace is essentially a maximum a-posteriori adapta-
tion (MAP) of w in the subspace defined by T. An efficient
procedure for the optimization of the total-variability sub-
space T and subsequent extraction of i-vectors is described
Dehak et al. [8, 9]. In this paper, the pooled total-variability
approach is used for i-vector feature extraction where the
total-variability subspace (Rw

telmic = 500) is trained on
telephone and microphone speech utterances together.

3. IDV COMPENSATION APPROACH

When PLDA speaker verification is trained using out-domain
data, it significantly affects the speaker verification perfor-
mance due to mismatch between development data and evalu-
ation data. Inter dataset compensation techniques are required
to compensate this mismatch. Aronowitz [2] introduced inter
dataset variability compensation (IDVC) to explicitly com-
pensate for dataset shift in the i-vector space, which is based
on NAP method. Out-domain Switchboard dataset is required
to partition into sub datasets in order to estimate the IDVC ap-
proach.

In this section, we introduce a different IDV approach to
that proposed in [2] to compensate the mismatch between
in-domain and out-domain data. For this estimation, out-
domain Switchboard dataset is not required to partition into
sub datasets. Recently, we have proposed SUV estimation
approach for short utterance speaker verification system [5].
Similarly to the SUV estimation [5], the mismatch between
in-domain and out-domain is captured using the outer product
of the difference between the out-domain i-vectors and aver-
age of speaker unlabelled in-domain i-vectors. The dataset
mismatch variation, SIDV , can be calculated as follows,

SIDV =
1

N

N∑
n=1

(wOD
n − wID

avg)(wOD
n − wID

avg)T (2)

where wOD
n is out-domain i-vectors, and wID

avg is average of
in-domain unlabelled i-vectors. The IDV decorrelated matrix,
D, is calculated using the Cholesky decomposition of DDT =

1
SIDV

. After the IDV decorrelated matrix, D, is estimated,
inter dataset variability compensated out-domain i-vectors are
extracted as follows,

ŵIDV = DT w (3)

Once inter-dataset variability compensated i-vectors, LDA
projection is applied to compensate the additional session

variation prior to the PLDA modelling and reduce the dimen-
sionality [10], which is explained in following in Section 3.1.

3.1. LDA approach

The LDA transformation is estimated based up the standard
within- and between-class scatter estimations Sb and Sw, cal-
culated as

Sb =

S∑
s=1

ns(w̄s − w̄)(w̄s − w̄)T , (4)

Sw =

S∑
s=1

ns∑
i=1

(ws
i − w̄s)(ws

i − w̄s)
T , (5)

where S is the total number of speakers, ns is number of utter-
ances of speaker s. The mean i-vectors, w̄s for each speaker,
and w̄ is the across all speakers are defined by

w̄s =
1

ns

ns∑
i=1

ws
i , (6)

w̄ =
1

N

S∑
s=1

ns∑
i=1

ws
i . (7)

where N is the total number of sessions. In the first stage,
LDA attempts to find a reduced set of axes A through
the eigenvalue decomposition of Sbv = λSwv. The IDV-
compensated LDA-projected i-vector can be calculated as
follows,

ŵIDV-LDA = AT w (8)

After LDA-projection, length-normalized GPLDA model pa-
rameters are estimated in as described in Section 4.

4. LENGTH-NORMALIZED GPLDA SYSTEM

4.1. PLDA modelling

In this paper, we have chosen the length-normalized GPLDA,
as it is also a simplified and computationally efficient ap-
proach [11]. The length-normalization approach is detailed
by Garcia-Romero et al. [11], and this approach is applied on
development and evaluation data prior to GPLDA modelling.
A speaker and channel dependent length-normalized i-vector,
ŵr can be defined as,

ŵr = ¯̂w + U1x1 + εr (9)

where for given speaker recordings r = 1, .....R; U1 is the
eigenvoice matrix, x1 is the speaker factors and εr is the resid-
uals. In the PLDA modeling, the speaker specific part can
be represented as w̄ + U1x1, which represents the between
speaker variability. The covariance matrix of the speaker part
is U1U1

T . The channel specific part is represented as εr,
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which describes the within speaker variability. The covari-
ance matrix of channel part is Λ−1. We assume that precision
matrix (Λ) is full rank. Prior to GPLDA modelling, standard
LDA approach is applied to compensate the additional chan-
nel variations as well as reduce the computational time [12].

4.2. GPLDA scoring

Scoring in GPLDA speaker verification systems is conducted
using the batch likelihood ratio between a target and test i-
vector [13]. Given two i-vectors, wtarget and wtest, the batch
likelihood ratio can be calculated as follows,

ln
P (wtarget,wtest | H1)

P (wtarget | H0)P (wtest | H0)
(10)

where H1 denotes the hypothesis that the i-vectors represent
the same speakers and H0 denotes the hypothesis that they do
not.

5. EXPERIMENTAL METHODOLOGY

The proposed methods were evaluated using the the NIST
2008 SRE corpora. For NIST 2008, the performance was
evaluated using the equal error rate (EER) and the minimum
decision cost function (DCF), calculated using Cmiss = 10,
CFA = 1, and Ptarget = 0.01 [14]. Outer-domain data is
defined as Switchboard I, II phase I, II, III corpora, and in-
domain data is defined as NIST 2004, 2005 and 2006 SRE
corpora.

We have used 13 feature-warped MFCC with appended
delta coefficients and two gender-dependent UBMs contain-
ing 512 Gaussian mixtures throughout our experiments. The
UBMs were trained on Switchboard I, II phase I, II, III cor-
pora, and then used to calculate the Baum-Welch statistics
before training a gender dependent total-variability subspace
of dimension Rw = 500. The pooled total-variability rep-
resentation was trained using Switchboard I, II phase I, II,
III corpora. For out-domain PLDA speaker verification sys-
tem, the GPLDA parameters were trained using Switchboard
I, II phase I, II, III corpora. We empirically selected the num-
ber of eigenvoices (N1) equal to 120 as best value accord-
ing to speaker verification performance over an evaluation
set. 150 eigenvectors were selected for LDA estimation. S-
normalisation was applied for experiments. The randomly se-
lected telephone and microphone utterances from NIST 2004,
2005 and 2006 were pooled to form the NIST S-normalisation
dataset, and randomly selected utterances from Switchboard
I, II phase I, II, III were pooled to form the Switchboard S-
normalisation dataset [15].

Table 1. Performance comparison of LDA-projected GPLDA
systems on common condition of NIST 2008 short2-short3
evaluation condition when GPLDA and score normalization
is trained using out-domain and in-domain data.

GPLDA training
Score normalization

Out-domain data In-domain data
EER DCF EER DCF

Out-domain 4.69% 0.0232 3.87% 0.0169
In-domain 3.62% 0.0177 3.38% 0.0160
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Fig. 1. Comparison of IDV-compensated PLDA system
against in-domain and out-domain PLDA system.

6. RESULTS AND DISCUSSIONS

6.1. Out-domain PLDA speaker verification system

In this section, the performance of LDA-projected PLDA
speaker verification system was compared on NIST 2008
short2-short3 condition when GPLDA and score normal-
ization were respectively trained using in-domain and out-
domain data. Table 1 compares the performance of in-domain
and out-domain PLDA speaker verification system. It can be
observed from Table 1 that though GPLDA is trained using
out-domain data, if in-domain data is used for score nor-
malization, it significantly improves the speaker verification
performance as score normalization data behaviour matches
with evaluation data. Further, it was also found that when
GPLDA and score-normalization are trained using in-domain
data, the system achieves the best performance.

6.2. IDV-compensated PLDA speaker verification system

In previous section, it was found that if GPLDA and score
normalization are trained using in-domain data, PLDA speaker
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verification achieves the best performance. However, in real
world scenario, it is hard to collect labelled in-domain data,
whereas unlabelled data can be collected. It was also found
that if speaker verification is developed using out-domain
data, system achieves poor performance due to mismatch
between development data (out-domain) and evaluation data
(in-domain).

Though unlabelled in-domain data can be collected, it is
hard to collect huge amount of data. In Figure 1 we present
the results for our IDV-compensated PLDA speaker verifica-
tion system. We have experimented with our approach when
limited amount of unlabelled in-domain data is used to esti-
mate the IDV compensation matrix.

Figure 1 compares the EER values of IDV-compensated
PLDA system against in-domain and out-domain PLDA sys-
tems when IDV compensation matrix is trained using differ-
ent amount of unlabelled in-domain data. IDV-compensated
PLDA system achieves over 10% relative improvement in
EER values over out-domain PLDA system showing that our
IDV approach effectively compensates the mismatch between
in-domain and out-domain data.

7. CONCLUSION

The novel unsupervised inter dataset variability (IDV) com-
pensation approach was proposed in this paper to improve
the out-domain PLDA speaker verification systems. It is well
known that when PLDA is trained using out-domain data, it
significantly affects speaker verification performance due to
the mismatch between development data and evaluation data.
We introduced a novel unsupervised IDV compensation ap-
proach that compensates for the dataset mismatch. Our IDV-
compensated PLDA system achieved over 10% relative im-
provement in EER values over the out-domain PLDA system
showing that the IDV approach compensates the mismatch
between in-domain and out-domain data.
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