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Abstract 

The performance of automatic speech recognition system 
degrades significantly when the incoming audio differs from 
training data. Maximum likelihood linear regression has been 
widely used for unsupervised adaptation, usually in a multiple-
pass recognition process. Here we present a novel adaptation 
framework for which the offline, supervised, high-quality 
adaptation is applied to clustered channel/speaker conditions that 
are defined with automatic and manual clustering of the training 
data. Upon online recognition, each speech segment is classified 
into one of the training clusters in an unsupervised way, and the 
corresponding top acoustic models are used for recognition. 
Recognition lattice outputs are combined. Experiments are 
performed on the Wall Street Journal data, and a 37.5% relative 
reduction of Word Error Rate is reported. The proposed 
approach is also compared with a general speaker adaptive 
training approach. 
 
Index Terms: MLLR, CMLLR, clustering, ROVER, SAT 

1. Introduction 

The performance of automatic speech recognition (ASR) system 
degrades significantly when the incoming audio differs from 
training data in terms of channel, speaker, and noise conditions. 
In a practical ASR system, maximum likelihood linear regression 
(MLLR) [1] and constrained maximum likelihood linear 
regression (CMLLR) [2] have been widely used for unsupervised 
adaptation, e.g., usually in a multiple-pass recognition process 
[3, 4, 5]. Adaptation in such systems usually relies on a limited 
amount of data, and the recognition outputs that are often 
unreliable when there is a mismatch between the training and test 
data [6, 7, 8]. Nevertheless, the supervised online adaption is 
usually not a convenient solution, especially when the channel 
and speaker condition changes frequently as in the broadcast 
news speech. In this paper, we present a novel adaptation 
framework that utilizes offline, supervised, high-quality 
adaptation with CMLLR followed by MLLR and online speech 
segment classification (or model selection). The first difference 
between the proposed approach and those in [6, 7, 8] is how the 
models are combined. In [6, 7, 8], the models are combined 
through the estimation/approximation of a new model from the 
offline models, while in this work, the offline models are intact 
and recognition results are then combined. A second difference 
is that in [6, 7, 8], to estimate new model parameters, either 
supervised training is needed or there are a lot of data for 
unsupervised estimation. While in this work, each single 

utterance can be classified in an unsupervised manner. A third 
difference is how the sub-models are selected. A novel approach 
is proposed here to use unsupervised acoustic scoring. In a 
related work [9], the adaptation was performed online by 
transforming the selected training speakers' acoustic data to the 
test data.  
 Experiments in this paper are performed using the RWTH® 
(Aachen University) ASR toolkit [10, 11]. Initially, a general 
acoustic model (AM) is trained using the Wall Street Journal 
(WSJ0 and WSJ1) training data. The training data are then 
automatically clustered based on Bayesian Information Criterion 
[12], after concatenating the speaker-based utterances. For each 
cluster or speaker, a supervised CMLLR is performed, followed 
by a supervised MLLR, resulting in a feature transformation 
matrix for CMLLR and Gaussian mean transformation matrices 
for MLLR. During testing, an incoming audio is recognized 
using the general acoustic model; the first-pass recognition also 
produces a word alignment; the alignment is applied to each sub-
model to produce an accumulated acoustic score; these scores are 
compared, and the top-two models are selected. The second-pass 
recognition is then performed using the pre-computed CMLLR 
matrix and MLLR matrices that correspond to the selected 
automatically derived cluster. There are four adapted recognition 
processes (CMLLR vs CMLLR-MLLR and top best model vs 
second best model).  Recognition lattice outputs from these four 
processes are then combined through the Recognizer Output 
Voting Error Reduction (ROVER) [13]. Finally, an evaluation on 
the WSJ0 test data shows a 37.5% relative reduction of Word 
Error Rate (WER). The approach is also compared with the 
general CMLLR-based SAT. 
 There are several advantages of this proposed approach. 
(1) Offline, supervised, high-quality adaptation is utilized for the 
online adaptation based on a feature-space segment 
classification. (2) The approach can be easily extended to include 
more clusters (channel/speaker characteristics) with a simple 
CMLLR and CMLLR-MLLR adaptation. (3) The online AM 
switching (i.e., applying CMLLR and MLLR matrices) can be 
realized without much additional computational overhead and in 
a supervised fashion. (4) The approach can lead to a potential 
diarization of channel/speaker conditions. (5) The proposed 
approach, in theory, can be extended to the deep neural networks 
models [14] without much effort, while it is not so 
straightforward in [6, 7, 8]. 
 This paper is organized as follows. Section 2 describes the 
baseline ASR system and overall system design. Section 3 
describes the automatic clustering of training data. CMLLR and 
MLLR adaptation is described in Section 4. Model selection or 
segment classification is presented in Section 5. The overall 
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experiment setup including the ROVER system combination, test 
results are presented in Section 6. The paper is then concluded 
with discussion and future work in Section 7. 

2. Baseline ASR system 

The RWTH ASR toolkit [10, 11] is used for carrying out the 
experiments described in this paper. The overall system is 
illustrated in Figure 1. 

2.1. Frontend feature extraction 

A 16-kHz audio is pre-emphasized (α=1), segmented into frames 
(Hamming windowing, a frame shift of 10 ms, and a frame 
duration of 25 ms), and followed by a 512-point fast Fourier 
transform (FFT). The obtained spectral amplitude is then warped 
according to Mel scale and integrated within each of 20 
triangular filters (a bandwidth of 268.258 Hz). A discrete cosine 
transform is applied to the logarithm of the Mel-scale filterbank 
outputs to obtain the 16-dimensional mel-frequency cepstral 
coefficients (MFCC). The mean normalization is carried out for 
each utterance. Across all the training data, a text-independent 
variance normalization matrix is computed.  
 

 
 
 For the initial linear segmentation, an energy term is 
computed for each frame right after the FFT and is then 
normalized across the utterance. For the initial monophone 
model training and decision tree training, the 16-dimensional 
MFCCs are first variance-normalized and then augmented by 16 
first-order linear regression coefficients and one second-order 
linear regression coefficient, leading to a 33-dimension feature 
vector. Finally, a linear discriminant analysis (LDA) transform 
with 45-dimension output is trained with nine consecutive 16-
dimension feature frames (left four frames), resulting in a 144 x 
45 transformation matrix.  

2.2. General AM training 

The current system has 46 phonemes, including a silence, non-
speech, and pause. Triphone AMs are trained based on the 
context of these phonemes. Across-word modeling is used to 
model contexts between words. Each model contains three states. 
Forward, skip, and lop transitions between states are set globally 
except that the silence model has its own transitions.  
 Linear segmentation is performed using the normalized 
energy, and the 33-dimension feature is used to produce the 
initial monophone Gaussian models. This initial model is then 

re-trained for 21 iterations. In the next step, the monophone 
model is further retrained for 20 iterations with a splitting step 
every three iterations. At the end of this training, the produced 
alignment is used to calculate simple Gaussian distributions for 
every triphone state. These distributions are then used to 
calculate the tying based on a top-down fashion with 144 
phonetic questions, resulting in phonetic decision trees 
(classification and regression trees) with 1001 triphone states 
(including silence). The same alignment is then used to calculate 
the LDA transform matrix.  
 Triphone models are trained using the LDA features, the 
decision trees, and the monophone alignment. The training is 
iterated for 24 times with a splitting every three iterations. Thus, 
the maximum number of densities for each mixture is 256. The 
obtained general AM is later used for the CMLLR and MLLR 
adaptation.  

3. Acoustic Data Clustering 

Automatic clustering is performed using the Bayesian 
Information Criterion [12]. Each cluster is modeled as a 
Gaussian distribution: 

  ,N  (1) 

To decide whether to join/divide into two clusters is based on 
maximum likelihood ratio with a penalty term:  
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where ∑, ∑1, and ∑2 are the sample covariance matrices from 
both clusters (N frames), the first cluster (N1 frames), and the 
second cluster (N2 frames), respectively.  is the panel weight 
that is 4 in this study. d is the dimension of the LDA features that 
are used for computing the covariance matrices, which is 45. For 
this study, the number of clusters is arbitrarily set to 25 to have 
sufficient training data in each cluster (about 3 hours) and to 
have sufficient clusters to cover different acoustic conditions.  
 Utterances from each individual speaker are 
concatenated first. These concatenated files are then clustered. 
The automatic clustering of training data can be considered a 
multiple-view of the data. In the future, different views of the 
data can be added, for example, a view from the accent, a view 
from estimated vocal-tract length, etc. Later, the recognition 
lattice outputs from these views can be combined through 
ROVER. 

4. Cluster-Based Adaptation 

The general AM described in Section 2.2 is adapted to each 
cluster and speaker. Specifically, for each cluster/speaker, a 
CMLLR adaptation is applied with the triphone mixture models 
and LDA features. The monophone alignment with the one 
Gaussian density per mixture is used for the CMLLR adaptation. 
Following the CMLLR, a MLLR adaptation is applied to each 
cluster using the triphone mixture models and the CMLLR-
adapted LDA features. The monophone alignment with the 
maximum 256 Gaussian densities per mixture is used for the 
MLLR adaptation. Both rotation matrices and offset vectors are 
estimated. The same decision trees from the general AM training 
is used for the MLLR class definition. The number of classes is 

Figure 1: An overview of the proposed system.
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set to 64. The minimum observation for each class is 50 seconds, 
and for silence, the number is 10 seconds.  

5. Segment Classification 

Segment classification is performed in an unsupervised fashion. 
For each segment, a first-pass recognition using the general 
acoustic model is applied. The process produces a word 
alignment, that is, each frame (fn) will have an acoustic model 
mixture identify (mn,j). With each CMLLR cluster model (Tk), 
each frame feature (fn) is transformed with the corresponding 
CMLLR matrix (Tk), and its acoustic score is evaluated against 
the general acoustic model (mn,j) and is then accumulated.  
 For the CMLLR, the models with the top-best and second-
best scores are selected. The top selected model identities will be 
transferred to the CMLLR-MLLR case. That is, the model 
selection is only based on the CMLLR models. The top-two 
models are selected so as to approximate the new speaker 
condition. In [6, 7, 8], the projection of all cluster models is used 
to approximate the new speaker condition. The AMs adapted to 
such clusters are then used to recognize the test utterance. The 
MLLR transformation of the general AM can be performed 
offline, the CMLLR transformation is relatively fast, and the 
evaluation of feature again a single mixture is also fast. 
Therefore, the main computation complexity comes from the 
first-pass recognition. 

6. Experiment Setup and Test Results 

6.1. Experiment setup 

Experiments are carried out on the Wall Street Journal corpus. 
Training is conducted on the WSJ0/WSJ1 SI-284-speaker corpus 
(37414 utterances and 283 actual speakers) and testing on the 
WSJ0 1992 development and evaluation sets. The test set 
includes eight speakers, 330 sentences, and 5,353 words in total. 
Both training and test data are adapted from the Kaldi tutorial 
processing [15].   
 LDA features (dimension of 45) are used for recognition. 
The general AM has 222,425 densities and a global covariance 
diagonal matrix. Each mixture has a maximum of 256 densities.  
 Recognition is performed with the single instruction multiple 
data (SIMD) diagonal maximum feature scoring. During 
recognition, the penalties for loop, forward, skip, and exit are 3, 
0, infinity, and 0, respectively, while for silence, they are 0, 3, 
infinity, and 20, respectively. Word conditioned tree search is 
carried out for which the AM pruning threshold is set to 240 and 
the language model pruning threshold is set to 180. Language 
model 3-gram lookahead is used to improve both the speed and 
performance [10]. 
 For each utterance, first-pass recognition is performed with 
the general acoustic model. The recognition result is used to 
select the top two models in the CMLLR and CMLLR-MLLR 
families, respectively. The same utterance is recognized with the 
four models separately. Each process produces a lattice with a 
pruning threshold of 380. The four lattices are processed to add 
word confidences using Frank Wessel's approach [16]. After 
that, the four lattices are combined with ROVER, and the 1-best 
result is obtained. 

6.2. Language model and lexicon 

In this work, the 5k trigram backoff language model (tcb05cnp) 
that comes with the WSJ data is used. During recognition, 
language model weight is set to 16.  
 Lexicon (one pronunciation per word) is obtained with a 
trainable grapheme-to-phoneme converter (Sequitur G2P) that 
was trained with an in-house 58k dictionary. In the produced 
lexicon, each word has one pronunciation variant. 

6.3. Speaker adaptive training (SAT) 

The proposed adaptation approach is also evaluated against a 
general two-pass SAT approach. After training of a general 
acoustic model, a CMLLR transformation matrix is estimated for 
each one of the 283 speakers. After that, each utterance’s feature 
is projected using its corresponding CMLLR matrix, and then a 
SAT model is trained with new transformed features. 
 During decoding, the first-pass results are used to train an 
unsupervised CMLLR matrix to SAT model. The unsupervised 
scheme is applied to each one of the eight speakers in the test 
data. When the clustering approach in Section 3 is applied to the 
test data, the same eight speaker label data can be obtained. After 
the CMLLR estimation, a second pass recognition is applied. 

6.4. Results 

Recognition WERs in percentage are displayed in Table 1 for 
each of the eight speakers and across the speakers in the WSJ0 
test data. The baseline (BL) refers to the recognition with the 
general AM without adaptation. Results for the four switched 
models, top-CMLLR-model-selection (C1), second-CMLLR-
model-selection (C2), top-CMLLR-MLLR-model-selection 
(M1), and second-CMLLR-MLLR-model-selection (M2) and 
their ROVER (ROV) combination are displayed in the third, 
fourth, fifth, sixth, and seventh column, respectively. To 
compare the proposed approach with popular adaptation 
approach, the SAT adaptation results are also reported in the 
eighth column. 

Table 1.Word error rates in % on the WSJ0 test set using 
the proposed approach. 

Speaker BL C1 C2 M1 M2 ROV SAT 
440 2.61 2.61 2.30 2.30 2.76 1.69 1.84 
441 7.22 5.49 6.75 4.08 5.65 3.61 4.87 
442 5.68 4.85 5.40 5.12 6.93 4.29 4.43 
443 1.82 1.52 1.67 2.43 2.43 1.22 0.91 
444 5.68 3.51 4.32 3.24 5.54 2.70 3.38 
445 4.49 3.99 3.00 3.49 3.49 2.83 3.99 
446 
447 

2.62 
5.33 

2.47 
5.48 

2.91 
5.33 

2.77 
5.18 

2.47 
5.78 

2.04 
3.81 

1.89 
5.18 

Overall 4.45 3.74 3.98 3.59 4.43 2.78 3.31 
 
 The baseline results are comparable to those in [17, 18]. For 
both CMLLR and CMLLR-MLLR models, the top selected 
model outperforms the second selected model. Interestingly, the 
top selected CMLLR-MLLR model outperforms the top selected 
CMLLR model, which is predicted; while the second selected 
CMLLR model outperforms the second selected CMLLR-MLLR 
model. This is probably due to the fact that the top two models 
are selected only based on the CMLLR models. The overall 
WER reduction for the top selected CMLLR-MLLR model is 
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19.3% relative, compared to the baseline. When the four systems 
are combined, the performance is further improved. That is, all 
eight speakers show a performance improvement, and the overall 
WER reduction is 37.5% relative.  

The CMLLR-based SAT also improved the recognition 
significantly over the baseline by 25.6%. However, the proposed 
approach can further improve over the SAT approach, for which 
the formal is performed on each utterance, while the latter is 
required to perform on each speaker. As a comparison, when the 
CMLLR adaptation for SAT is applied to each utterance, the 
WER is deteriorated to 7.08%. 

6.5. Computational complexity 

With the current setting, the first-pass decoding has a Real-Time-
Factor (RTF) of around 0.5. The segment classification is 
completed with a RTF of around 0.1 and can be further speed-up 
with GPU computing. Compared to the SAT approach, the 
current approach will have three additional recognition 
processes, which add to the computational complexity. However, 
this computational complexity can be alleviated using the lattice 
acoustic modeling rescoring, which is much faster, with a RTF 
of around 0.1 for each rescoring. At the same, the recognition 
quality is not affected or at least not that much. In the current 
case, the WER after ROVER with lattice rescoring is still 2.78%. 

7. Discussion and Conclusions 

In this paper, we present a novel adaptation scheme that takes 
advantage of the offline, supervised, high-quality adaptation and 
the online speech signal classification. The relative overall WER 
reduction is 37.5% with the WSJ0 training and test set, compared 
to the baseline. The proposed approach also outperforms the 
popular SAT adaptation approach. In addition to its improvement 
in the WER, the proposed approach can perform on each 
individual utterance in an unsupervised fashion, while SAT 
requires enough of speech data from the same speaker. 
 When a new utterance comes in, it might not match the 
defined cluster/speaker very well. Therefore, any individual 
model cannot represent the new data at its optimum. In [6, 7, 8], 
a new model is estimated through the projection in “eigenvoice” 
space that fits the speech data perfectly. Therefore, such 
approach works best with the limited amount of data in a 
supervised fashion, while the proposed approach doesn’t use any 
pre-defined sample data. In the work, the combination of sub-
models to match the new utterance is achieved through the 
ROVER in the result space. The advantage is that the well 
trained sub-models are being selected and run in its optimum 
status. Another advantage is that such a framework can be easily 
extended to the deep neural networks acoustic models [14].  
 The proposed approach is very flexible in that new channel 
and/or speaker data can be added continuously without 
interfering with previously trained models. For example, during 
broadcast news speech recognition, when a new anchor’s data 
are added, a new cluster can be added to the system with the 
corresponding CMLLR and MLLR training, without affecting 
any existing models. With the increased number of clusters, the 
computation cost for the speech segment classification increases 
as well. However, the model selection time can be ignored here 
as it is very fast. 
 Also, the proposed system can track which models are 
selected more frequently than others, and correspondingly, more 
efforts (e.g., fine-tuning) can be spent to enhance/update those 

more frequently selected models. The system can also integrate 
recognition lattice outputs from different views of the data. The 
types of views (e.g., accent, vocal tract length, etc.) can be 
expanded based on the acoustic analysis of the training data. 
 The current approach has some similarities to the 
discriminative training [19, 20] in that the adapted model for 
each cluster/speaker results in reduced phoneme error rate for the 
training data. Furthermore, each adapted model is more 
discriminative for its corresponding cluster. However, the 
advantage of the proposed approach is that each speech segment 
is recognized with an "optimized" adapted model but not a 
general discriminatively trained AM. 
 One immediate application of the proposed method is for 
broadcast news transcription for which the speech is segmented, 
each segment is classified, and the "best" models from multiple 
views are then used to recognize that segment. 
 Given that there are too many factors (accents, background 
noise, reverberation, etc.) that cause mismatches between 
training and test speech, it would be tremendous work to train a 
cluster-based adaptation for each condition. Nevertheless, any 
techniques that deal with robustness can be incorporated into this 
framework.  
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