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ABSTRACT

Nasal resonance is utilized in certain languages to differentiate
word meanings. The joint filtering effect by the vocal tract and the
nasal tract can be modeled by the auto-regression moving-average
(ARMA) approach. However, unlike all-pole (i.e., AR) modeling, it
has been difficult to derive the equivalent vocal-tract area function
directly from an ARMA model due to the nonlinear nature in the
relation between model coefficients and vocal-tract geometry. In
this paper, we propose a method to decompose an ARMA model
approximately into α/C(z) + β/D(z); in our context, 1/C(z)
and 1/D(z) represent the filtering effects of the oral and the nasal
tract, respectively. Once the decomposition is performed, equivalent
oral-tract and nasal-tract area functions can be obtained by convert-
ing C(z) and D(z) to their respective lattice representation. The
proposed method was applied to non-nasalized and nasalized vowels
produced by three speakers, and it was found that the ratio r = β/α
tends to be higher in nasalized vowels than in their non-nasalized
counterparts. The vocal-tract area function estimated by the present
approach was also fairly stable for sustained vowels.

Index Terms— Speech, ARMA modeling, nasalization, vocal-
tract area function

1. INTRODUCTION

Speech coding has been a well-studied field in signal process-
ing. Nowadays, speech signals are routinely encoded via linear
prediction-based algorithms [1] for mobile-phone communication.
Modern speech encoders mostly exploit all-pole modeling, and for
any stable all-pole model (i.e., all the poles are located inside the
unit circle) there is an equivalent acoustic tube model [2]. The cor-
respondence can be established via the lattice representations [3];
the key technique is to find the reflection coefficients of the lattice
sequentially via a step-down procedure such as the Levinson-Durbin
method [4]. The reflections in the lattice can be regarded as if
they are caused by impedance mismatch between cascaded acoustic
tubes. Thus the vocal tract cross sectional area, as it varies along the
airway, can be derived.

The procedure mentioned above does not easily generalize
if nasal resonance is also considered. Nasal resonance changes
the transfer function into the form of a pole-zero model H(z) =
B(z)/A(z). Though it is possible to derive optimal A(z) and B(z)
from speech signals via ARMA approaches [5, 6], converting an
ARMA model into an equivalent tube model is not straightforward.
Lim and Lee [7] attempted to convert any given pole-zero model
(i.e., ARMA model) into an acoustic tube model that consisted of

Thanks to the Ministry of Science and Technology of Taiwan for funding
under Grant No. 102-2220-E-007-020.

three branches representing the pharynx, the oral tract, and the nasal
tract, respectively. However, the lossless assumption imposed a
constraint that B(z) had to be symmetric. The constraint was later
removed so the tube model was allowed to be lossy [8]. Lim and
Lee verified that the reflection coefficients in the revised tube model
could be effectively estimated from synthetic speech that the model
produced.

However, Lim and Lee’s approach [8] relied on a simplifying
assumption that the mouth is shut so the sounds radiate from the
nose. Because of this assumption, the reflection coefficients corre-
sponding to the oral tract did not reside in the expression of A(z),
the denominator of the transfer function. More recently, Huang et al
[9] attempted to relax the assumption so sound could radiate from
both the lips and the nostrils in the tube model. However, the reflec-
tion coefficients consequently coupled to both A(z) and B(z) in a
nonlinear fashion, and approximate solutions were difficult to find.
In the present research, we avoided solving the nonlinear coupled
equations. Instead, the poles are assigned to the oral tract (OT) and
the nasal tract (NT) first, and then the reflection coefficients and the
area functions of OT and NT can be derived via a standard step-down
procedure. The proposed method is described in Sec. 2, experimen-
tal results are presented in Sec. 3, and discussion and conclusions
follow.

2. METHODS

In this section, we shall first give a brief introduction to ARMA
modeling and review an iterative approach proposed by Schnell and
Lacroix [6]. After a step-down procedure, a revised ARMA model
is obtained, and its poles are assigned to two components C(z) and
D(z) that represent the OT and the NT, respectively. Then, the cross-
section areas of the OT and the NT can be derived.

2.1. ARMA modeling

Given a discrete-time signal x(n), ARMA modeling looks for lin-
ear coefficients {a1, ..., aN} and {b1, ..., bM} so as to minimize the
variance of the modeling error e(n) defined as follows,

e(n) = x(n)−
N∑
k=1

akx(n− k)−
M∑
k=1

bke(n− k). (1)

Taking the z-transform of Eq. (1), a transfer function H(z) for the
ARMA model is obtained,

H(z) =
B(z)

A(z)

∆
=

∑M
k=0 bkz

−k

1−
∑N
k=1 akz

−k
≡ X(z)

E(z)
, (2)
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where b0 = 1, and we follow the convention that the uppercaseX(z)
andE(z) denote the z-transform of the corresponding lowercase sig-
nals x(n) and e(n), respectively. Applying Parseval’s theorem, the
energy ε of e(n) can be expressed as

ε =

∞∑
n=−∞

|e(n)|2 =
1

2π

∫ π

−π

∣∣∣∣ 1

H(ejω)
·X(ejω)

∣∣∣∣2 dω. (3)

In the present research, Schnell and Lacroix’s iterative approach [6]
is adopted to find {a1, ..., aN} and {b1, ..., bM} such that ε is min-
imized. The approach is summarized in Figure 1; the key idea is
to apply Burg’s method [4, 10] alternately and refine the estimate of
A(z) and B(z) in every iteration. The process continues until the
the present modeling error ε[i] cannot be reduced further, i being
the iteration step number. Note that the difference between path 1
and path 2 in Fig. 1 is whether to find A(z) given B(z) first, or in
the opposite order. In every step, it is hoped that at least one of the
paths lead to a reduced modeling error. If both paths successfully
reduce the modeling error (i.e., when ε′, ε′′ < ε[i]), Schnell and
Lacroix suggested to update the ARMA model by setting A(z)’s re-
flection coefficients kj to be kj = (k′j + k′′j )/2, where {k′1, ..., k′N}
and {k′′1 , ..., k′′N} are the reflection coefficients of A′(z) and A′′(z)
in their respective lattice-structure representations [2, 4]. Similarly,
a separate set of reflection coefficients are determined for B(z).
Therefore, the condition |kj | < 1 is satisfied (j = 1, ..., N ), which
guarantees that the updated model would remain stable at every iter-
ation [11].

Fig. 1. The iterative ARMA algorithm adopted from Schnell and
Lacroix [6]

Fig. 2. Modeling the filtering effect of the upper respiratory airway
according to the form of Eq. (5). The transfer function for the shaded
area is B(z)/Ã(z).

2.2. Three-branch modeling and a step-down procedure

Figure 2 illustrates the geometry three-branch modeling for the up-
per respiratory airway. When an excitation signal e(n)1 is produced
at the glottis, Fig. 2 suggests that e(n) is first filtered by the main
tract’s transfer function 1/G(z), then the resulting signal splits into
the OT and the NT, which are characterized by transfer functions
1/C(z) and 1/D(z), respectively, with unknown scaling factors α
and β. The orders of G(z), C(z), and D(z), denoted as NG, NC ,
and ND respectively, should be proportional to the lengths of the
tracts. For instance, NG = 2fsl/c, where fs denotes the sampling
rate, l denotes the length of the main tract, and c is the speed of
sound [3]. In the present research, fs = 16 kHz, and the orders are
set as NG = 7, NC = 8, and ND = 10 based on the typical length
of each tract for humans.

Assume that the transfer function of the entire system isH(z) =
B(z)/A(z) given by ARMA modeling. We apply a step-down pro-
cedure to A(z) [12],

An−1(z) =
An(z)− knz−nAn(1/z)

1− k2
n

; (4)

the procedure is initialized at n = N where AN (z)
∆
= A(z), and it

repeated for NG times (i.e., from n = N to N − 6). The resulting
polynomial AN−7(z), denoted as Ã(z), is regarded as the AR part
for the joint filtering effect of the OT and the NT.

2.3. Pole assignment and transfer function decomposition

Next, we attempt to perform the following decomposition,

B(z)

Ã(z)
=

α

C(z)
+

β

D(z)
=
αD(z) + βC(z)

C(z) ·D(z)
. (5)

However, given B(z) and Ã(z), Eq. (5) might not have an exact
solution in general. Here, we propose to find an optimal decomposi-
tion by exhaustively looking at all possible ways of writing Ã(z) as
the product of two polynomials C(z)

∆
=
∑NC
k=0 ckz

−k and D(z)
∆
=∑ND

k=0 dkz
−k. Denote the roots of Ã(z) as {z1, ..., zN−NG}, and

without loss of generality assume that the first NC of them are as-
signed to C(z). Then, C(z) can be calculated as follows,

C(z) =

NC∏
k=1

(
1− zkz−1) , (6)

1here we intentionally re-use the notation e(n) for excitation because the
modeling error has been treated as the excitation signal in the literature of
linear prediction-based speech synthesis.
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and similarly D(z) =
∏N−NG
k=NC+1(1− zkz

−1). Given any arbitrary
combination of C(z) and D(z), we define the parameters p = [α̂,
β̂]T to be the ones that minimizes a target function J(·),[

α̂, β̂
]T

= arg min
α,β

J
(
α, β ;C(z), D(z)

)
, (7)

where J is defined as follows:

J =
1

2π

∫ π

−π

∣∣∣B(ejω)− αD(ejω)− βC(ejω)
∣∣∣2 dω. (8)

In practice, J is more straightforward to calculate in the time do-
main:

J ≡
M∑
n=0

|bn − αdn − βcn|2 , (9)

where we implicitly assume that B(z) and αD(z) + βC(z) have
the same order (as polynomials of z−1). Thus, Eq. 7 is a least-
square problem and p can be found by standard pseudo-inverse ap-
proaches; let us define b = [b0, ..., bM ]T , c = [c0, ..., cM ]T , and
d = [d0, ..., dM ]T .2 Then, the solution to Eq. 7 is given as follows,

p = (QTQ)−1QTb,

whereQ = [d|c] is a matrix of size (M +1)×2. When performing
the factorization Ã(z) = C(z)D(z), we require that the coefficients
ck and dk must all be real. Equivalently, this means that each pair of
conjugate roots of Ã(z) should stay together after root assignment.

Finally, the optimal decomposition is achieved by choosing the
combination that globally minimizes J ,

{C∗(z), D∗(z)} = arg min
C(z),D(z)

J
(
α̂, β̂;C(z), D(z)

)
(10)

subject to the constraint that C(z) ·D(z) = Ã(z). The optimal scal-
ing parameters α∗ and β∗ are simultaneously determined by substi-
tuting C∗(z) and D∗(z) back to Eq. (7).

2.4. Deriving the effective cross-sectional areas

The polynomials C∗(z) and D∗(z) each corresponds to a lattice
structure characterized by reflection coefficients. Ways of converting
from filter coefficients to reflection coefficients can be found in [11].
Denote the coefficients as {µd1, ..., µd10} for D∗(z), {µc1, ..., µc8} for
C∗(z), and {µg1, ..., µ

g
7} for G(z). Then, the reflection coefficients

determine the cross-section area (CSA) ratios Sm+1/Sm between
adjacent segments of tubes in the following manner [2],

Sm+1

Sm
=

1− µm
1 + µm

,m = 1, ..., NG (or NC , ND). (11)

Here, increasing m by 1 means moving one step into the throat to-
ward the glottis. To visualize the results, we set the following bound-
ary conditions: Sd1 = 1.1 cm2 at the nostrils, Sg8 = 2.5 cm2 at the
glottis, and Sc9 = Sg1 at the velum.

3. TESTING THE METHOD ON SPEECH SIGNALS

In this section, we first present results of CSA estimation for sus-
tained vowels. Then we compare the results of transfer function de-
composition for nasalized vs. non-nasalized vowels.

2Because the NT is longer than the OT for humans, we have NC <
ND = M , and the highest M −NC coefficients in c are set to zero.

Fig. 3. Tukey’s box plot of CSAs derived from a recording of the
vowel /a/. The top-left, bottom-left, and the bottom-right panels
show results for the nasal tract, the oral tract, and the main tract,
respectively. The “radius” is defined as

√
CSA/π. Statistics were

obtained from 79 frames of length 50 ms.

Fig. 4. CSAs of the nasal tract and the oral tract derived from record-
ings of the vowels /o/ (top row), /u/, and /i/ (bottom row), respec-
tively. Statistics were obtained from 79 frames of length 50 ms.
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3.1. Sustained vowels

A male speaker was recruited to record his production of the vowels
/a/, /o/, /u/, and /i/. The speaker was instructed to sustain the vowel
for about three seconds, and the middle 2-second portion of the sig-
nal was saved for analysis. Figure 3 shows results of the estimated
CSAs from one recording of /a/, displayed using Tukey’s boxplot
[13]. In particular, each box shows the inter-quartile range with a
median line, and every + mark represents an outlier. For this partic-
ular recording, the estimated main-tract CSAs were most consistent
across frames. The estimated CSAs for the NT had more variation,
as depicted by an increased number of outliers in the plot.

Figure 4 shows the results of estimated nasal-tract and oral-tract
CSAs for vowels /o/ (top row), /u/ (mid), and /i/ (bottom) produced
by the same speaker. The CSAs for the main tract were quite similar
across the four vowels so we choose not to show them here.

Comparing the CSAs for the OT across the four vowels, /a/ had
the largest radius near the lips at segment #2, followed by /o/ and
/u/, and the radius for /i/ was the smallest. Comparing /o/ and /u/,
the over-all profile of their radius functions were similar, and the
main difference was at segment #1 right at the lips where /u/’s radius
is smaller than that of /o/. The profile for /i/, being a front vowel, had
surprisingly large CSAs near segments 4, 5, and 6 when compared
to /u/, the back vowel that has approximately the same height. This
might partially be due to the fact that /i/ in Mandarin is tense so
the speaker pulled his cheeks toward both sides when producing it.
Consequently, the CSAs near segments 4 to 6 was enlarged even
though the tongue position might be high at the moment.

The CSAs for the NT do not have a clear contrasting profile be-
tween different vowels. This agrees with the common sense that the
NT does not change its shape when different vowels are produced.

3.2. Nasalization

Three male speakers were recruited to produce non-nasalized vowels
/a/, /i/, and /e/ and their nasalized counterparts, denoted as /an/, /in/,
and /en/, respectively. Two of the speakers are native speakers of
Min Nan (a Chinese language spoken in Fujian, Taiwan, and Singa-
pore). The other speaker does not speak Min Nan but could under-
stand it. These vowels were chosen because their nasalization can
differentiate word meanings; for instance, /wa/ means “me” while
/wan/ means “a bowl”. So it was expected that a native speaker of
Min Nan should be able to produce the contrast with ease.

The speakers were instructed to produce each non-nasalized
vowel first and, after taking a brief breath, switch to the nasalized
counterpart while holding the shape of their oral cavity as much as
they could. Generally this should involve lowering the velum to
enhance the nasal resonance. Each speaker produced each vowel for
five times, and the recording was conducted inside a sound booth
where the noise floor was about 30 dB SPL (sound pressure level).

Signals were partitioned into overlapping 50-ms frames, and the
algorithm described in Sec. 2.3 was applied to obtain C∗(z) and
D∗(z) in Eq. (10). Then, we counted the frames for which β∗ > α∗.
Results are summarized in Table 1. Note that β = 0 would reduce
the transfer function in Eq. (5) to an all-pole model, meaning that
the sound does not enter the nasal cavity at all. In general, we can
expect that the coefficient β in Eq. (5) should be higher for nasalized
vowels than for non-nasalized vowels.

Results in Table 1 suggest that, while in average nasalized vow-
els had a higher chance to have a larger β∗ than α∗, the condition
did not always hold — across all vowels recorded in the present re-
search, some nasalized frames ended up having α∗ > β∗, and vice

Table 1. Percentage of frames with β∗ > α∗. The total frame
number N = 395 for each nasalized or non-nasalized vowel.

speaker 1 /a/ /i/ /e/
non-nasal. 31.6% 31.3% 18.4%
nasalized 69.5% 45.2% 43.6%
speaker 2 /a/ /i/ /e/
non-nasal. 27.9% 19.8% 27.9%
nasalized 70.6% 55.0% 45.2%
Speaker 3 /a/ /i/ /e/
non-nasal. 41.3% 37.7% 38.3%
nasalized 71.3% 67.2% 45.7%

versa. Nevertheless, across all vowel positions and all three speak-
ers, the general tendency shown in Table 1 is consistent with the
expectation that the β value should be higher for nasalized vowels
than for non-nasalized vowels.

4. DISCUSSION AND CONCLUSIONS

In principle, nasalized vowel should be produced by lowering the
velum, thus allowing the sound waves to propagate into the nasal
cavity. We could have presented the statistics of the estimated CSA
near the velum to see if present results support this hypothesis. How-
ever, we fell short of doing so because wave scattering at the junc-
tion of the three tracts in Fig. 2 could be modeled more accurately.
In general, the scattering coefficients should relate to the area ra-
tios between the three tracts and, due to our favor of simplicity, this
has not been considered yet. Future research along this direction is
warranted.

Outliers in Figs. 3 and 4 indicate that the present method for
CSA estimation might be sensitive to small fluctuations in the out-
come of ARMA modeling. Perhaps the requirement C(z)D(z) =

Ã(z) can be relaxed a little so roots of Ã(z) can be jittered for the
purpose of minimizing the target function J . This is also a possible
future research direction.

The main contribution of the present research would likely be
the idea of transfer function decomposition in Eq. (5). Through
exhaustive search among all combinations of C(z) and D(z), the
global optimum decomposition can always be found, and effective
CSAs of the OT and the NT can be derived via lattice representa-
tion. The computation time for searching through all possible ways
to perform root assignment Ã(z) = C(z)D(z) turns out to be not
so demanding for NC = 8 and ND = 10. If a higher sampling
rate (e.g., 44.1 kHz) is used, the order of the all-pole models would
become higher, and the algorithm for optimal decomposition may
consequently need to be improved.

To summarize, in this research a novel way is proposed to trans-
form any ARMA-based speech production model into a three-branch
waveguide model. Globally optimal parameters could be obtained
through exhaustive search, and the method has been tested on nasal-
ized and non-nasalized vowels, in particular produced by speakers of
the Min Nan language. In the future, the proposed method could be
developed into an OT and NT visualization tool so as to help people
master the skill of nasalization when learning a new language.
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