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ABSTRACT

In this paper, we propose to use acoustic feature based
submodular function optimization to select a subset of
untranscribed data for manual transcription, and retrain the
initial acoustic model with the additional transcribed data. The
acoustic features are obtained from an unsupervised Gaussian
mixture model. We also integrate the acoustic features with the
phonetic features, which are obtained from an initial ASR
system, in the submodular function. Submodular function
optimization has been theoretically shown its near-optimal
guarantee. We performed the experiments on 1000 hours of
Mandarin mobile phone speech, in which 300 hours of initial
data was for the training of an initial acoustic model. The
experimental results show that the acoustic feature based
approach, which does not rely on an initial ASR system,
performs as well as the phonetic feature based
approach. Moreover, there is complementary effect between the
acoustic feature based and the phonetic feature based data
selection. The submodular function with the combined features
provides a relative 4.8% character error rate (CER) reduction
over the corresponding ASR system using random selection.
We also include the desired feature distribution obtained from a
development set in a generalized function, but the improvement
is insignificant.

Index Terms— Active learning, data selection, automatic
speech recognition, submodular optimization

1. INTRODUCTION

A large amount of speech data can easily be obtained via
telephone calls or voiced-based applications such as voice
search and voice message. To effectively utilize the large
amount of untranscribed data, semi-supervised approaches [1-6]
have attracted researchers’ attention. For example, confidence-
based approach [3,4,6] was proposed to first decode the
untranscribed utterances using an existing ASR system, and
then select the utterances with high confidence scores. The
selected utterances together with their decoding hypotheses are
then used to update the initial acoustic model. However, the
confidence-based approach might prefer to select the data
which is close to the training data in terms of speaking styles,
noise types and content. Consequently, it could restrict the
diversity of the training data. To avoid such shortcoming,
active learning techniques [4,6,7] were proposed to select a
small portion of data for manual transcription. The advantages
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of doing so are: (1) We do not enforce the knowledge the initial
system knows. Note that the initially learned knowledge can be
prone to errors. (2) The diversity of the selected data can be
improved [6-8].

This work emphasizes on the active learning techniques in
the following ASR application scenario: given an initial ASR
system and a large amount of untranscribed speech data, the
objective is to identify a small portion of data for manual
transcription and add the newly transcribed data to retrain the
acoustic model. The selected data should provide maximum
contribution to the performance of the ASR system.

To address the above data selection problem, different
active learning techniques [9-15] have been examined. For
example, confidence-based approach was applied to acoustic
modeling [12-15], and the utterances with low confidence
scores were selected for manual transcription. The low-
confident utterances are considered to be not well modeled by
the existing acoustic model, and they are usually distorted by
noise, spoken with accents or inarticulate. Such data can
augment the diversity of the training set. Also, based on an
existing acoustic model, Yu et al. [6] proposed to select data by
maximizing the lattice entropy reduction over the entire
database. Alternatively, Wu et al. [10] considered the data
distribution, and selected data uniformly according to the
predefined target speech units such as phonemes and words.
Similarly, Siohan [8] selected data according to the distribution
of context-dependent HMM states in a development set. Itoh et
al. [9] suggested that both informativeness and
representativeness of the data should be assessed at the same
time. However, there is no optimal guarantee in terms of the
objective function being optimized.

To overcome the above limitation, submodular
optimization was examined and applied to active data selection.
In submodular data selection, much work investigated the
data selection based on the diversity of either the phonetic or
the acoustic information. Wei et al. utilized tri-phone as
phonetic feature [16] in the submodular function to select a
subset from the transcribed training data to build an acoustic
model. Wei et al. used the string kernel submodular function
based on hypothesized phonetic label to select a subset to build
a phone recognizer [17]. Shinohara [18] used the tri-phone
distribution in the submodular function closed to a desired
(uniform) distribution. In acoustic only approaches, Lin et al.
[19] proposed to use submodular active selection on a Fisher-
kernel based graph over untranscribed utterances, hence the
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pairwise similarities between all the utterances were computed.
In a later work, Wei et al. [20] used a two-layer of acoustic
features in the feature-based submodular function for the data
selection of untranscribed data for acoustic model training.
Their experimental results on the TIMIT corpus showed that
the subset selected from untranscribed data could perform as
well as if the transcription was known.

Inspired by the above mentioned work [16-20], we
propose to use the acoustic features obtained from an
unsupervised Gaussian mixture model (GMM), and
integrate the acoustic features with the phonetic features
(obtained from an initial ASR system) in the submodular
function for the previously mentioned ASR application
scenario. Different from other feature based submodular
functions, computation of the similarity between any two
utterances is hence avoided. Moreover, we investigate the
effect of the generalized submodular function (with a desired
feature distribution) as in [18] on the performance of the newly
trained acoustic model. In addition to using a uniform
distribution, we use the desired feature distribution obtained
from a development set.

2. BACKGROUND

Submodular functions have been examined and applied to
speech data selection [16-20]. The concept of submodularity
refers to one type of properties of set-valued function.

Suppose f:2” % to be a set-valued function, where
V ={uy,up,--,uy} represents a set of N speech utterances. The
function f is submodular if for every Ac BcV and seV\B,

FBUls})-f(B)< f(AU{s}) - f(4). )]
Submodularity means that the gain by adding an element into a
smaller set should not be less than that by adding the element
into a superset. A submodular function f is monotone non-
decreasing if f(4uis))- f(4)20 for vsey\a,4cv . A submodular
function f is normalized if @)= 0.

For ASR application, a subset S of training data 7 that
maximizes the objective function f at a constraint should be
selected. That is,

max {/(S):¢(S) < K} )
ScV

where ¢(S)<K is the constraint.

The optimal problem is NP hard, and while it is NP hard, it
can be approximately solved by using a greedy forward-
selection algorithm, which is near-optimal as guaranteed by
theorems proved by Nemhauser et al. [21]. Moreover, the
greedy algorithm likely provides the best solution obtained in
polynomial time unless P=NP [22].

3. FEATURE BASED SUBMODULAR FUNCTION

The submodular function f may take various forms, and there

are several different submodular functions proposed in the

previous works [16-20]. In [19], fﬁ,C(S):z max w;; is used
jes

as the submodular function, but it requires to compute the

similarity wj; between any two utterances. In [16,20],

ieV

researchers examined the feature-based submodular function
ffea(S):ZueUg(mu(S)) , where m, ($)=3 _cm,(s) measures
the degree of feature u in the subset S and g(e) is a monotone
non-decreasing function. Hence it is a two-layer feature-based
submodular function and it also avoids computing the similarity
between pairwise utterances. However, it only considers either
the phonetic or the acoustic features.

For an ASR application, the selected utterances should

match those in the application domain. Let P={p,} ., be the

probability distribution over the feature set U , which is often
used to characterize the application domain, and can be
estimated from a development set. The normalized function
O
Ly ™u(S)

feature set U , and M:{@ (g)} v denotes the probability of

u e

mu(S) = can be seen as a distribution over the

distribution.
Consider the KL-divergence between the two
distributions D(P||M) , then the following equation can be

obtained:
D(P"M) = const.+ log(ZueU m, (S))— ZuEU Du log(mu (S)) )]
Then, we define a set-valued function
Srr-maiea-a(S) =103, m,(8))- D(P|M)

:zueUp“ IOg(mu (S)) (4)

The function fyey—march—fea(S) is a submodular function

according to submodular optimization theory [23]. It can
represent the combination of its quantity of S via its features,
and the feature distribution is close to the distribution P . Note
that when P={p,}, ., is in a uniform distribution, Eq. (4) has

its form similar to f,.(e) -

Term frequency-inverse document frequency (tf-idf), is
one of the representation for a document in the vector space
model, and is used to reflect how important a word is to a
document in a corpus. It is often used in information retrieval
and text mining. In ASR application, an utterance can be seen
as a document, which can be represented by a tf-idf vector.

For a given utterance s and feature u , the value of m,(s)

can be computed by using the tf-idf vector, That is,

my, (s) =1tf (u,s)xidf (u) .
3.1 Phonetic feature based function

To generate the features U of untranscribed utterances, an
initial ASR system is used to decode the utterances into
sequences of phonemes or phoneme states. When a relatively
low CER can be obtained, it is reasonable that the best
decoding phoneme or phoneme state path is selected as the
phoneme representation for an utterance. Thus, when selecting
the phoneme states or n-gram phoneme states as features, the
value of  m,(s) can be computed by using

my, () = 1f (uy,8)xidf (uy) , where u; e Uy is a phonetic feature, and

Uy is the phonetic feature set.
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3.2 Acoustic feature based function

Gaussian mixture model (GMM) is widely used to capture the
acoustic characteristics of utterances. In text-independent
speaker recognition, GMM is used as a universal background
model to capture the general speech characteristics of a
population of speakers [24]. The model captures not only
speaker variation but also environmental variation. Moreover,
each Gaussian component in the model can represent a
phoneme class sharing similar acoustic characteristics [25]. In
zero-resource speech processing, GMM is used to derive robust
unsupervised posterior features for audio-only spoken term
detection [25], subword unit discovery [26,27] and topic
segmentation [28]. In this paper, we use GMM to characterize
the acoustic property of each utterance for selection.

The quality, signal-to-noise ratio (SNR), accent, and
speaking rate of these speech data are not reflected in
transcriptions. Therefore, it is insufficient for selecting
utterances only based on their phonetic information. The
acoustic property should be considered when selecting
utterance. In this paper, Algorithm 1 is proposed to extract
acoustic feature for data selection.

Algorithm 1: Acoustic feature extraction for data
selection

Step 1: Extract the spectral features (MFCC or PLP) of all
the utterances for selection, and train a GMM using the spectral
features.

Step 2: Decode each utterance by using the GMM, and
output the index of the Gaussian component with the maximum
posterior probability along the frame sequence of the utterance.

Step 3: Compute the n-gram counts of each utterance
based on the frame sequence of the Gaussian component
indices.

Step 4: Compute the tf values of each utterance, and
compute the idf value of each Gaussian component index n-
gram by using all the utterances.

Step 5: Compute the tf-idf values of each utterance.

Based on Algorithm 1, the n-grams of Gaussian
component indexes are selected as features, and the value of
my, (s) can be computed by my, (8)=1f (ug,s)xidf (uz)
where u, eU, is an acoustic feature, and U, is the acoustic
feature set.

3.3 Submodular function fusing phonetic and acoustic
features

In order to fuse the phonetic and acoustic features of the
utterances, the following function is proposed to use and select
utterances:

Fiose-ra®=D ., puglm,Slad gms), )

where g(¢) and g,(e) is a monotone non-decreasing function,
Uy is the phonetic feature set, U, is the acoustic feature set,
a >0 is the weight used to trade-off between the phonetic and
acoustic representations, {e”u,- U eUl} is phonetic feature

distribution, and can be estimated from a development set, and
mu(S):Zsesmu(s) .

Eq. (5) is a submodular function according to submodular
function optimization theory [23], and it considers both the
phonetic and the acoustic features in speech data selection task.

4. EXPERIMENTS AND RESULTS
4.1 Experimental setup

To verify the proposed acoustic feature based submodular
function and the fusion of phonetic and acoustic features, data
selection experiments were conducted on 1000 hours of
Mandarin mobile phone speech data. The data was collected at
2 phases: i) A subset of 300 hours was first collected and
manually transcribed to train an initial acoustic model; ii)
Another subset of 700 hours of speech data was collected for
data selection purpose. The data in both subsets consists of read
speech and spontaneous speech with ratios 55% and 45%
respectively. The read speech utterances were collected from
more than 3000 speakers in a quiet environment, and the
prompts were phonetically-rich sentences. While the
spontaneous speech utterances were recorded through a
simulated messaging system in both quiet and noisy
environments, there were no constraints on the content. All the
1000 hours of data was recorded using different iOS, Android
and Windows OS mobile devices, and the data format was
PCM with 16KHz sampling rate, 16 bits and mono channel.

The task was to select 100 hours of speech data from the
700 hour subset. The selected data was then combined with the
300 hour subset to train an acoustic model for ASR evaluation.
An open test set of 10 hour spontaneous speech was collected
to evaluate the ASR performance which was measured by
character error rate (CER). In addition, a non-overlapping
development set which consists of 60 hour spontaneous data
was used to estimate the phoneme state distribution in

Stev-marched—pea(®) of Eq. (4). The following 6 data selection

approaches were examined and compared:

® Random-selection: data was selected randomly.

®  Confidence-based-selection: data was selected with the
lowest confidence scores [12-15].

®  Phonetic-feature-based-selection: data was selected using
ffea(®) as submodular function with the best decoding

state as feature [16].
®  Dev-matched-phonetic-feature-based-selection: data was
selected using fyey—marched— fea(®) @s submodular function

with the best decoding state as feature.
®  Acoustic-feature-based-selection: data was selected using
ffea(®) as submodular function with n-gram Gaussian

component index as feature.
®  Fusing-phonetic-acoustic-based-selection: ~ data  was
selected using f/fiseq— oa(®) as submodular function, and

fusion of the best decoding state and n-gram Gaussian
component index was used as feature.

In the experiments, 52-dimensional features, including 12-
dimensional mel frequency cepstral coefficient (MFCC) and 1-
dimensional pitch along with their 1st, 2nd, and 3rd derivatives,
were used. The cross-word tri-phone models represented by 3-
state left-to-right HMMs were trained using boosted MMI
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discriminative training criterion [29]. State-clustered tri-phone
HMMs contained 6500 states, and each tied state was modeled
by 32 Gaussian components. The tri-gram language model,
which consisted of about 118 thousand words and 11 millions
of n-gram entries, was used to evaluate different systems
performance. In Algorithm 1, the number of mixture
components was 4096, and 2-gram Gaussian component index
was used. In Eq. (5), we set @ =02 and g;(x)= g5 (x)=log(s) .

4.2 Experimental results and analysis

There are two baseline systems in our experiments. The
baseline system "Baseline-300h" is built by using the 300 hours
of data collected at the first phase, and the baseline system
"Baseline-300h + Random-selection" is built by using
combining randomly selected 100 hours of data with the data
collected at the first phase. Table 1 lists the results on the test
set.
Table 1. Baseline systems testing results

System CER(%)
Baseline-300h 22.3
Baseline-300h + Random-selection 20.8

From the Table 1, we can find that with the augment of
training data, the system performance can improve.

Table 2. Different systems testing results

System CER(%)
Baseline-300h + Confidence-based-selection 20.6
Baseline-300h + Phonetic-feature-based-selection 20.2
Baseline-300h + Dev-matched-phonetic-feature-based-selection 20.1
Baseline-300h + Acoustic-feature-based-selection 20.1
Baseline-300h + Fusing-phonetic-acoustic-based-selection 19.8

In Table 2, system "Baseline-300h + Confidence-based-
selection" is built by using combining confidence based
selected 100 hours of data with the first phrase collected 300
hours of data. In Table 2, other systems are built similar to
"Baseline-300h + Confidence-based-selection" system.

When comparing Table 2 with Table 1, we can find that:
(1) The confidence based data selection and the submodular
based data selection are better than the random data selection.
(2) The Dev-matched-phonetic-feature-based-selection is
slightly better than Phonetic-feature-based-selection, but the
difference is insignificant. Despite similar performance, we
find that Dev-matched-phonetic-feature-based-selection select
more utterances from the spontaneous speech subset (~90% of
the selected 100 hour data) than Phonetic-feature-based-
selection (~75%). (3) Only using Gaussian component index n-
gram as utterance representation also shows positive effect, and
it can help us to select useful utterance for ASR. In our
companion paper, a similar acoustic feature based submodular
approach also shows its effectiveness for unsupervised data
selection in a keyword search task [30,31]. (4) Fusing the
phonetic features and acoustic features can help us to select
more useful utterances for ASR. When comparing with the 300
hour baseline system, there is an 11.2% relative CER reduction.
When comparing the ASR built by using our proposed
approach with the 400 hour baseline system, there is a 4.8%

relative CER reduction. From the experimental results, we also
find that there are complementary effects between phonetic
feature based data selection and the acoustic feature based data
selection. We also observe that the phonetic features and
acoustic features select utterances quite differently in terms of
the types of recording mobile phones and speakers.

0.006

L 4 == Phonetic-feature-based-selection
0.005

——  Acoustic-feature-based-selection

0.004

0.003

0.002 -

Ratio of selected data (%)

0.001

Fig. 1. Percentage of data selected from different speakers

Fig. 1 shows the percentage of data selected from different
speakers in the spontaneous speech subset. In this subset, there
is an equal amount of data from different speakers available for
selection. From the figure, we find that the phonetic based
approach chose the data from each speaker more evenly than
the acoustic feature based approach. The phonetically-rich
sentences in the data subset probably made the more even data
selection among speakers. And the uneven inter-speaker
variation probably made the more uneven data selection among
speakers in the acoustic feature based approach. We believe
that the complementary effect of the two data selection
approaches leads to the selection of more useful utterances,
which further improves the ASR performance.

5. CONCLUSION

In this paper, we propose to use an acoustic feature based
submodular function for data selection. As other feature based
submodular functions, the computation of the similarity
between any two utterances is avoided. This feature based
approach is feasible for the selection from a large amount of
data. In our experiments, it is encouraging that the acoustic
feature based approach, which does not requires an initial ASR
system, performs as well as the phonetic feature based
approach. Moreover, we propose to combine the acoustic and
the phonetic features in the feature based submodular function.
We find that there are complementary effects between acoustic
feature based and phonetic feature based data selection. The
submodular function with the combined features provides a
relative 4.8% and 3.9% CER reduction over the corresponding
ASR system using random selection and confidence based
selection respectively. The GMM that we use to obtain the
acoustic features probably captures both speaker and
environment variation. In the future, we would study the effect
of these two kinds of variation to the data selection separately,
evaluate the data selection algorithms on deep neural network
acoustic models, and study the effectiveness of our proposed
approach when more training data is involved.
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