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ABSTRACT

A Gaussian or log-linear mixture model trained by maximum
likelihood may be trained further using discriminative train-
ing. It is desirable that the mixture splitting is also done dur-
ing the discriminative training, to achieve better mixture den-
sity distribution. In previous work such a discriminative split-
ting approach was presented. Similarly, the resolution of a
deep neural network may also be increased by splitting. In
this paper, discriminative splitting is applied as a way of ini-
tializing a linear bottleneck between two layers of a DNN. Ex-
periments for a single hidden layer and six hidden layer cases
show the potential of this approach as an alternative method
of pre-training for linear bottlenecks for MLP hidden layers.

Index Terms— mixture splitting, deep neural network,
linear bottleneck

1. INTRODUCTION

The task of speech recognition is to convert a given audio
stream into text in a particular language. For a long time the
standard technique for acoustic modelling has been a hid-
den Markov model (HMM) based Gaussian mixture model
(GMM). This GMM is commonly trained by a maximum
likelihood (ML) training procedure. However, ML train-
ing makes some assumptions about the distribution which
in practice may not be true, because the amount of data is
limited. Another training paradigm called discriminative
training takes the competition between classes into account,
and has shown to outperform the ML-based acoustic model
training. Thus, using an initial ML-trained GMM and corre-
spondingly created HMM-to-acoustic-feature alignment, the
GMM model can be further trained by a discriminative cri-
terion such as MMI (maximum mutual information) or MPE
(minimum phone error) [1] [2]. However, a more direct
approach would be to train an acoustic model completely
using discriminative training procedure. Some discriminative
acoustic models such as maximum entropy Markov models
(MEMM) [3] and conditional random fields [4] have been

proposed in the literature. These acoustic models can be com-
pletely trained with a discriminative criterion, only utilizing
the ML training for a feature-to-HMM-state alignment. The
log-linear mixture model (LLMM) model also incorporates
mixtures like a standard GMM, and due to its equivalence
with a GMM [5], it has been initialized from GMM models.
In previous work [6] it was shown that an LLMM can be
directly estimated without initialization from GMM model.
This is done by discriminative splitting of LLMM parameters
during the discriminative training.

More recently, multilayer-perceptron and deep neural net-
works [7] have been increasingly popular to model the emis-
sion posterior probabilities of HMM phone states. Since the
log-linear models have a somewhat similar structure to an
MLP network (it is equivalent to a layer with softmax activa-
tion function), therefore we aim to extend the results of log-
linear discriminative splitting to deep neural networks. Ex-
periments show that the discriminative splitting can be used
to estimate a sparse linear transformation between two lay-
ers of a deep MLP, whose performance compares favourably
with other procedures. Secondly, this aforementioned trans-
formation can be used to initialize a non-sparse linear trans-
formation, which can be employed as an effective pre-training
method.

The remainder of the paper is organized as follows; Sec-
tion 2 reviews the discriminative splitting of mixture densi-
ties for hidden conditional random fields. Section 3 describes
the application of this concept to initialization of a deep neu-
ral network i.e. initializing a higher resolution model from a
lower resolution one. Some results for splitting of deep neural
networks are presented in Section 4 and finally a conclusion
and outlook are provided in Section 5.

2. DISCRIMINATIVE SPLITTING OF LOG-LINEAR
MIXTURE MODEL

In [5] log-linear models were introduced as an alternative
to the Gaussian distributions, for representing the emission
probabilities of HMM states. Under assumption of a pooled

4614978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



covariance matrix, the posterior probabilities of Gaussian sin-
gle density HMMs are equivalent to corresponding log-linear
models’ posterior probabilities. It is therefore possible to
convert the Gaussian parameters to log-linear and vice-versa.
The posterior probability of a feature vector x with respect to
a phonetic class s is defined as

pθ(s|x) =
exp(λ>s x+ αs)∑
s′ exp(λ>s′x+ αs′)

(1)

Here the state parameters are Λs = {λs, αs}. The equiv-
alence of Gaussian and log-linear posterior probabilities can
also be extended to Gaussian mixture models. Here the
hidden variables are the mixture components of the state-
emission probability. The corresponding posterior probability
is

pθ(s|x) =

∑
l exp(λ>s,lx+ αs,l)∑

s′,l exp(λ>s′,lx+ αs′,l)
(2)

for l = 1...Ls mixture parameters in each class s.
For discriminative training, the frame level objective func-

tion is

F (frame)(Λ, A) = −τΛ||Λ||2 +

R∑
r=1

Tr∑
t=1

ws log pΛ(st|xt)

(3)
for a fixed feature vector to state alignment sT1 . τΛ is a

regularization parameter. ws are state weights which could be
tuned to give less weight to the accumulations of e.g. noise
and silence states. α̂s = αs + log p(s), p(s) is the prior
probability of state s and R is the total number of sentences
in the training corpus. The state priors are added to αs for
training, and later subtracted at recognition time. The objec-
tive function is a frame-level MMI, with extra regularization
terms. The MMI optimization can also be done at sentence
level i.e. the prior probabilities are sentence level language-
model probabilities.

2.1. Splitting procedure for LLMM

The log-linear training is only convex for a single density per
state s. For mixture density training this presents challenges
as the initial guess is very important and can influence the fi-
nal results for the objective function and WER. Therefore we
need a method to specify a better initial guess to the training
of mixture densities, so that the WER is at least as good as
the word error rate of a similar but less complex model. To
solve this problem we adopt an approach similar to the itera-
tive density splitting algorithm used in a maximum likelihood
framework, but applied to the log-linear parameters λs,l in-
stead of the means, as in the Gaussian mixtures case. All the
λs,l in state s are duplicated and a small offset is added to both

new λ’s to pull them apart. The log-linear model is covariance
normalized, therefore the direction of the offset is not impor-
tant. Subsequent training of this newly split model causes an
increase in the objective function as the new λ’s discrimina-
tively adapt themselves to the training data. This successive
discriminative training and splitting can be repeated several
times until the desired model resolution is achieved.

3. DISCRIMINATIVE SPLITTING FOR DEEP
NEURAL NETWORKS

3.1. Deep Neural Networks

Neural networks have become an important tool to estimate
HMM state posterior probabilities in acoustic modelling, es-
pecially with the application of deep learning concept in the
last few years. A neural network for speech recognition is
usually a multilayer-perceptron (MLP), with the hidden lay-
ers having a sigmoid or another activation function and the
output layer having a softmax activation function. There are
two ways of applying neural networks for acoustic modelling:
tandem and hybrid MLPs. A tandem MLP system has a bot-
tleneck layer as the last output layer of the network and then
a regular GMM based maximum likelihood acoustic model is
trained on top of it. On the other hand, a hybrid MLP sys-
tem directly uses the posterior probabilities of MLP network
as acoustic model probabilities. In this work the application
of discriminative splitting for hidden layers of an MLP is dis-
cussed, which implies that these concepts can be used for tan-
dem as well as hybrid approaches.

3.2. Linear bottlenecks for DNNs

Two consecutive layers of an MLP network that are fully con-
nected may have redundancy in the structure. Many of the
elements in a layer may have a negligibly small effect on the
output of that layer. If the number of elements in a layer can
be reduced by removing those redundancies while not com-
promising the classification performance, it can provide large
decreases in time and memory requirements of MLP training.
Several methods have been proposed to achieve this compres-
sion. [8] have reduced the number of elements in the layers
by removing the close to zero elements and converting the
matrices to an index-based representation. [9] do a low-rank
factorization of the final weight layer and report a decrease
of 30-50% in the number of parameters without a signifi-
cant loss in final recognition accuracy. [10] have factored the
weight matrix into a product of two smaller matrices, pro-
viding parameter compression. They have reported encour-
aging results by doing a singular value decomposition (SVD)
based factorization between the hidden layers. The error rate
degrades at first but after doing a full network training with
back-propagation, the classification performance of the MLP
network is restored. [11] have proposed a training mechanism
whereby a hidden layer and its low-rank factorization can be
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Fig. 1. Flow diagram of discriminative splitting of MLP hid-
den layer

simultaneously trained from scratch. Apart from model pa-
rameter reduction, they report an added benefit of regulariza-
tion from this factorization. Thus the linear bottleneck can
reduce over-training of MLP network parameters.

3.3. Discriminative Splitting for DNNs

In this paper a method for training a linear bottleneck between
two MLP layers is investigated, which is inspired by mixture
density training of GMM acoustic models. For GMM initially
a single density is trained for each tied context-dependent
state. This density is then split iteratively into a successively
larger number of mixture densities until the desired parame-
ter resolution is achieved. The final class conditional proba-
bility is a weighted sum of all the respective densities in that
mixture. A similar approach has also been employed in Sec-
tion 2 for discriminative training of log-linear mixture acous-
tic models, where the state posterior probabilities have been
successively split during the discriminative training. Such a
method could in principle also be used for a hidden layer in an
MLP network; a hidden layer is trained and then all the nodes
and their weight parameters are duplicated with some random
offset. These duplicated and offset copies of each node are
being summed up into the original node, thus converting the
original hidden layer into a linear bottleneck with a new larger
hidden layer behind it. The feasibility of such a layer splitting

method is investigated. This process is illustrated graphically
in Figure 1.

4. EXPERIMENTS AND RESULTS

4.1. Speech Corpus and Baseline System

For the performance analysis of discriminative splitting,
the large vocabulary continuous speech recognition task
QUAERO English is used. It is composed of podcasts, tele-
vision news broadcasts and debates under a range of clean
to noisy conditions. The training corpus is a 50 hour subset
of the total QUAERO English data and the development and
evaluation corpora are 3 hours each.

The acoustic model of the baseline system uses cross-
word triphones. The lexicon contains 54k words and a tri-
gram language model is used. The classes are 4501 triphone
CART leaves and a pooled covariance is used.

For the input MFCC features the feature vector length is
29, and 17 consecutive frames are appended together. The
MLP network therefore has 493 input features. The number
of nodes in the output softmax layer is 4501 (No. of CART
states). The hidden layers have a sigmoid activation function.
The number of hidden layers and number of nodes in each
layer will be varied during the course of these experiments.
First, the results for a single hidden layer are presented, and
then for the case of six hidden layers (best system configura-
tion).

Table 1. Comparison of full hidden layer and linear mixture bottle-
neck, w.r.t. WER and no. of parameters

size of size of linear No. of WER (CER) %
hidden (mixture) params. dev eval
layer bottleneck

1024 - 5.1M 22.7 (14.7) 28.9 (19.0)
2048 1024 5.6M 22.1 (14.4) 28.4 (18.5)
8192 1024 8.7M 21.2 (13.6) 27.7 (17.4)

2048 no BN 10M 21.8 (14.2) 28.4 (18.1)
8192 no BN 41M 20.6 (12.9) 27.1 (16.9)

4.2. MLP with a single hidden layer

For a single hidden layer MLP, initially a network with 1024
hidden (sigmoid) layer nodes is trained. This gives a WER
of 22.7% on the development corpus. Then each node in
the hidden layer is duplicated such that each two consecutive
nodes sum up into one node in the following linear bottleneck
layer. A small random offset is added to each node’s parame-
ters, therefore the objective function (cross-entropy) remains
roughly the same. The network is then further trained so that
the increased resolution model adapts itself to the training
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Table 2. Comparison of sparse mixture bottleneck with full linear bottleneck, as well as random initialization vs. splitting

size of size of linear type of initialization No. of WER (CER) %
hidden layer bottleneck bottleneck type params. dev eval

128 no bottleneck 0.6M 32.1 (21.0) 39.6 (28.8)
2048 no bottleneck 10M 21.8 (14.2) 28.4 (18.1)

2048 128 mixture splitting 1.6M 24.2 (14.7) 31.0 (21.0)
2048 128 full splitting 1.9M 21.8 (13.0) 28.0 (18.1)
2048 128 full pre-training 1.9M 22.1 (14.5) 29.0 (18.5)

data. The WER decreases to 22.1%. Splitting the hidden layer
further to 8192 nodes brings the WER down to 21.2%. This
is 0.6% better than the WER with 2048 hidden layer size with
no linear bottleneck, with only 87% as much parameters. This
is shown in Table 1 (CER refers to character error rate).

It is important to note that splitting the hidden layer and
adding a mixture layer after it does not increase the number
of (non-linear) layers. It is basically a matrix factorization.

The linear mixture bottleneck as described above contains
only one matrix (the other matrix is sparse consisting of only
zeros and ones in a particular order, hence having no train-
able/storable parameters). What if we convert this sparse ma-
trix into a full matrix and train it further using the sparse
representation as initial guess? Would it be able to perform
better than a linear bottleneck initialized from discriminative
pre-training (random initialization)? As shown in Table 2 a
full linear bottleneck (two matrices) initialized from discrim-
inative splitting has a 2.4% better WER (dev) than a mixture
bottleneck (with only one non-sparse matrix). It is also 0.3%
better than a full linear bottleneck initialized from discrimina-
tive pre-training. This shows that the discriminative splitting
can be used as an effective pre-training method in cases where
linear bottlenecks are involved between the layers of a neural
network. Furthermore, by using a smaller model as an initial
guess, the number of training iterations is also decreased as
compared to random initialization as for regular pre-training.

4.3. MLP with six hidden layers

The discriminative splitting method for one hidden layer (as
in previous section) can easily be extended to a deep neural
network scenario. Table 3 shows the WER for a 6 hidden
layer deep neural network for the same task and configuration
as in the previous section. The details of this DNN setup can
be found in [11]. Each hidden layer has 2048 nodes. There is
a linear bottleneck of size 256 between every two hidden lay-
ers and between the last hidden layer and output layer. The
parameters of these linear bottleneck layers are initialized by
discriminative pre-training with random initialization. In our
experiment, the network is initialized first by pre-training a
small MLP of 256 hidden nodes and then discriminatively
splitting it to 2048 nodes. The comparison between these two

initialization types is shown in Table 3. It can be seen that
the system with splitting based initialization has 0.2% abso-
lute WER improvement over pre-training. This shows that the
potential of discriminative splitting applies to deep MLPs too.

Table 3. Comparison of random initialization pre-training and dis-
criminative splitting, for the same deep MLP network

initialization No. of WER (CER) %
type params. dev eval

pre-training 4.9M 18.2 (10.9) 24.0 (14.8)
splitting 4.9M 18.0 (10.7) 23.8 (14.8)

5. CONCLUSION AND OUTLOOK

In this paper discriminative splitting is presented as an ap-
proach to increasing the model resolution during the discrim-
inative training process. For training a log-linear mixture
acoustic model, instead of using ML split mixture models one
could perform the splitting during the MMI training. Simi-
larly, the resolution of a deep neural network may also be in-
creased by discriminative splitting method. Experiments for a
single hidden layer and six hidden layer cases show the poten-
tial of this approach as an alternative method of pre-training
for linear bottlenecks for MLP hidden layers.
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