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ABSTRACT

The conventional short-term interval features used by the Deep Neu-
ral Networks (DNNs) lack the ability to learn longer term informa-
tion. This poses a challenge for training a speaker-independent (SI)
DNN since the short-term features do not provide sufficient informa-
tion for the DNN to estimate the real robust factors of speaker-level
variations. The key to this problem is to obtain a sufficiently robust
and informative speaker representation. This paper compares several
speaker representations. Firstly, a DNN speaker classifier is used to
extract the bottleneck features as the speaker representation, called
the Bottleneck Speaker Vector (BSV). To further improve the robust-
ness of this representation, a first-order Bottleneck Speaker Super
Vector (BSSV) is also proposed, where the BSV is expanded into a
super vector space by incorporating the phoneme posterior probabil-
ities. Finally, a more fine-grain speaker representation based on the
FMLLR-shifted features is examined. The experimental results on
the WSJO and WSJ1 datasets show that the proposed speaker rep-
resentations are useful in normalising the speaker effects for robust
DNN-based automatic speech recognition. The best performance is
achieved by augmenting both the BSSV and the FMLLR-shifted rep-
resentations, yielding 10.0% — 15.3% relatively performance gains
over the SI DNN baseline.

Index Terms— speaker normalisation, augmented speaker rep-
resentation, deep neural network, speech recognition

1. INTRODUCTION

Recently, deep neural network (DNN) acoustic models have been
found to yield good performance for automatic speech recognition
(ASR) due to the ability to cope with a long span of acoustic fea-
tures and model a complex mapping function [1]. The DNNs are
trained with discriminative objective functions and therefore able to
implicitly reduce the acoustic variability from known or unknown
sources with increasing number of hidden layers. Nevertheless, the
DNN’s ability to compensate these variabilities is still limited due to
the following reasons: i) despite being powerful in detecting the pho-
netic events and implicitly learning the corresponding speaker char-
acteristics, as a global modelling approach, speaker-independent (SI)
DNNs can only learn the most common variabilities and thus less
sensitive to the detailed speaker attributes; and ii) the conventional
short-term features used by the DNNs do not capture the long term
information, which are important for the DNNs to reliably compen-
sate any speaker-level variation.

Therefore, the existing solutions to improve the robustness of
DNNs against speaker variability focus on incorporating speaker-
level information to the DNNs, such as augmenting the acous-
tic features with i-vectors [2] and introducing speaker-dependent
weights [3]. These approaches essentially trains speaker-aware
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DNNss that automatically learn to compensate for speaker variabil-
ity. Motivated by the simplicity of the i-vector approach, this paper
compares several other forms of speaker representation for feature
augmentation.

In this work, we examine three forms of speaker representations.
Firstly, we consider extracting bottleneck features from a bottleneck
DNN trained to classify speakers in order to derive the so called Bot-
tleneck Speaker Vector (BSV) as speaker representation. Similar to
the i-vectors [4], the BSV extractor is trained with speaker labels,
without requiring the phonetic transcriptions. However, the BSV
is based on the assumption that the speaker characteristics within
the short-term segments are uniformly distributed across all the pho-
netic classes. To alleviate this assumption, the bottleneck features
are soft-clustered into phonetic groups, based on the phoneme pos-
teriors generated by a monophone DNN and gather the first-order
statistics to construct a more detailed speaker representation, which
is referred to as the Bottleneck Speaker Super Vector (BSSV). Fi-
nally, the FMLLR-shifted features, which are the differences be-
tween the original and the FMLLR-transformed features, are pro-
posed as a more fine-grain frame-level speaker representation.

The rest of this paper is organised as follows. Section 2 gives an
overview of speaker normalisation techniques for DNN. Section 3
introduces the proposed BSV, BSSV and FMLLR-shifted speaker
representations. Section 4 presents the experimental results on WSJO
and WSJ1 to evaluate the effectiveness of the proposed speaker rep-
resentations.

2. SPEAKER NORMALIZATION FOR DNN

This section provides an overview of the existing speaker normali-
sation techniques for DNNs. Maximum Likelihood Linear Regres-
sion (MLLR) [5] is a popular model-based technique for adapting
Gaussian Mixture Models based acoustic models. Feature-based
MLLR (FMLLR) [6] is a special form of MLLR that allows a feature
transformation matrix to be estimated to reduce the speaker vari-
ability in the acoustic features. Training DNNs using these FM-
LLR transformed features have been found to yield promising im-
provements over the standard SI DNN systems [7]. However, the
FMLLR-transformed features may not be optimum for the DNN
as they are optimised for the GMM/HMM systems. Besides, the
FMLLR-transformed features may remove some information that
the DNN can exploit.

Another speaker normalisation approach for DNN is to augment
the acoustic features with additional speaker information and then
let the DNN learn the appropriate way to compensate for speaker
mismatch. For example, feature augmentation using the i-vectors
was proposed in [2]. i-vectors offer a robust speaker representa-
tion, which have been successfully applied to speaker verification
tasks [4] to capture speaker/session variability. In essence, this
method attempts to compress the speaker segments variability onto
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Fig. 1. The architecture of a speaker bottleneck DNN.

a low-dimensional factor space. Similar to FMLLR, the i-vectors are
learned separately and may not be optimum for the DNN training.
Another advanced speaker adaptation approach was proposed in [8],
where low-dimensional speaker representations (speaker codes) are
jointly estimated with the DNN weights to optimise the same objec-
tive function. In fact, connecting the speaker code to the first hidden
layer alone is the same as augmenting the speaker code to the acous-
tic features. In [8], it was found that i-vectors can be used as a better
initialisation for the speaker code and further improvement can still
be obtained by subsequently updating the speaker code. Another
recent study [3] also shows that directly appending the i-vectors to
the acoustic features is not optimum and further improvements can
be obtained by learning a DNN to transform the i-vectors.

A discriminative factor analysis using DNN was proposed in [9]
to address the speaker normalisation problem for DNNs. Firstly, two
bottleneck DNNs were built, one is for speaker classification while
the other one is for phone classification. Then, the linear activations
from the output layers of these DNNs are combined using another
independent DNN for the final speech recognition task. However,
this approach was found to be sensitive to intra-speaker variability
for speaker recognition [10].

3. PROPOSED SPEAKER REPRESENTATIONS

As discussed in the previous section, the key towards addressing the
speaker mismatch problem in DNN-based speech recognition sys-
tems is to extract reliable and discriminative speaker representations
and then train the speaker-aware DNNs to normalise the speaker ef-
fects. In the following, we will examine three different forms of
speaker representation.

3.1. Bottleneck Speaker Vector (BSV)

The Bottleneck Speaker Vector (BSV) representation is based on
the bottleneck features extracted using a bottleneck DNN, which is
trained to classify speakers. The architecture of the bottleneck DNN
used in this work is shown in Fig. 1. The DNN is trained using
the MFCC features which are spliced with the left and right context
frames. The network comprises two hidden layers with 1024 hidden
units and a bottleneck layer whose size can be adjusted to extract the
BSVs with the desired dimension. The size of the output layer is
S + 1, where S is the total number of training speakers. Each out-
put unit corresponds to one training speaker and an additional unit is
used to represent the silence frames. If the outputs of the bottleneck
layer represent the posterior probabilities of each speaker, then the
relationship between the bottleneck features and the speaker poste-
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Fig. 2. The first-order bottleneck super vector feature extraction pro-
cess.

riors is given by

exp (3, flac(k))wr)
>, exp (X flae(k))wjrn)

where P(sj|o:) is the posterior probability of the jth speaker, s;,
given the observation, oy, at time ¢. a;(k) is the kth bottleneck
feature at time ¢, f(-) is the sigmoid function and wjy, is the con-
nection weight between the kth bottleneck layer unit and the jth
output unit. If the output layer is modified to predict the deviation
of the speaker from the Universal Background Model (UBM) and
an utterance-based objective function is used [11], then the result-
ing bottleneck features will be similar to the i-vectors, except that
the bottleneck features are extracted per frame while the i-vectors
are extracted per utterance. The final BSV is obtained by simply
averaging all the bottleneck features belonging to each speaker:

P(sjlor) =
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where BSV, denotes the BSV for speaker s, a: is the bottleneck fea-
ture at time ¢, 7 is the set of speech frames that belong to speaker
s and | - | is the cardinality operator. Since the bottleneck DNN is
trained using a frame-based objective function, it may be sensitive
to phonetic variations. In the following, we propose expanding the
BSV into a super vector based on the phonetic classes, which will be
described next.

3.2. First-order Bottleneck Speaker Super Vector (BSSV)

The BSV speaker representation described previously assumes that
the speaker variability captured by the bottleneck features is inde-
pendent of the phonetic class of the speech frames so that it is suf-
ficient to take the average of all the bottleneck features from each
speaker as the speaker vector. However, this assumption does not
hold in practice. To address this problem, we propose extracting
phoneme-dependent BSVs, which effectively projects the bottleneck
features onto a super vector space. The resulting speaker represen-
tation is referred to as the Bottleneck Speaker Super Vector (BSSV),
given by:
BSSV. — | pey®)” @7 @71 3
s [ SVs BSVs BSV; } 3

where BSV'® denotes the BSV of speaker s for phonetic class c. The
phonetic-class-dependent BSV can be obtained by soft-clustering



the speech segments of each speaker into different phonetic classes

as follows:
psv(e) = 2er e “
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where () is the soft-assignment of the speech frame at time ¢ to
phonetic class c. Fig. 2 illustrates the BSSV extraction process. In
practice, this information is not available and has to be estimated. In
this work, a DNN is used to estimate ~y.(¢). The grouping used to
extract the BSSV can also be estimated directly from the bottleneck
speaker using distance-based unsupervised clustering.

3.3. FMLLR-shifted Features

So far, we have considered approaches that attempt to obtain a global
representation for each speaker. As a result, a constant speaker vec-
tor is appended to the acoustic features for each speaker. However,
this representation is not able to handle intra-speaker variabilities.
To address this issue, we propose a more localised and fine-grain
speaker representation, which is given by the difference between the
original acoustic features and the FMLLR-transformed features. We
refer to these features as the FMLLR-shifted features. Since FMLLR
minimises the speaker variability in the acoustic features (including
intra-speaker variabilities), the FMLLR-shifted features are believed
to encode useful speaker variability information that the DNN can
exploit. Although the FMLLR-shifted features are obtained using a
global FMLLR transform, we believe that presenting the FMLLR-
shifted features directly to the DNN is more advantageous as it al-
lows other frame-level speaker attributes to be captured explicitly.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

To evaluate the effectiveness of the proposed speaker representa-
tions, we perform experiments on the Wall Street Journal (WSJ) cor-
pus [12]. The training data from both WSJO and WSJ1 were used,
including 283 speakers and around 80 hours speech recordings. We
report the ASR performance in terms of Word Error Rate (WER) on
three test sets: DEV93, EVAL92 and EVAL93. All the systems use
Mel Frequency Cepstral Coefficient (MFCC) with 39 dimensions as
the basic features, including 12 static coefficients, energy, and the
first two derivatives. All the inputs to the DNNs are normalised to
have zero mean and unit variance. This training data is also used to
estimate the loading matrix for the speaker i-vectors. All the DNNs
used in this work are trained using the Kaldi toolkit. The training
labels are obtained from the state alignments using an MMI-trained
GMM/HMM system. Each DNN has five hidden layers with 1024
nodes. The basic inputs are made up of 15 frames of features.

4.2. i-vector vs. Bottleneck speaker vectors

Table 1 compares the WER performance of i-vectors (IVEC) and
BSV. The numbers in parentheses denote the size of the speaker vec-
tor. For the extraction of the BSVs, a speaker bottleneck DNN is
trained with two hidden layers (each with 1024 nodes) and a bottle-
neck layer. We investigated two bottleneck layer sizes: 25 and 100.
The output layer has 284 units (283 training speakers and silence).
‘None’ corresponds to the baseline SI DNN system without append-
ing any speaker representation to the input features. All the systems
with additional speaker representation are trained with a warm-start
configuration, where the well-train baseline system is used as the ini-
tial model and the weights connecting the additional inputs and the

Speaker Representation H DEV93 [ EVAL92 [ EVAL93 ‘

None 8.3 4.4 7.2
IVEC(25) 7.7 4.3 7.1
BSV(25) 7.9 4.2 7.0
IVEC(100) 7.4 4.3 6.7
BSV(100) 7.6 4.4 6.7
BSV(100) + IVEC(25) 7.5 4.2 6.9

Table 1. WER comparison between the IVEC and BSV speaker
representations.

| Speaker Representation [| DEV93 | EVAL92 | EVAL93 |

None 8.3 4.4 7.2
BSV(25) 7.9 4.2 7.0
First-order BSSV(25) 7.2 4.4 7.0

Table 2. WER of first order speaker supervectors

first hidden layer units are randomly initialised. 10% of the train-
ing data is used for cross-validation, which contains utterances from
all the training speakers. This configuration is important to ensure
that the ability to compensate for the speaker variability is properly
considered during training.

In general, adding speaker representation information consis-
tently improve the performance over the baseline system across all
the test sets. With the size of 25, both BSV and IVEC achieved
comparable performance. Slight improvements can be obtained on
DEV93 and EVALO3 if the size is increased to 100. The improve-
ment is statistically significant for BSV, but not significant for IVEC.
Finally, appending both BSV and IVEC achieved further improve-
ments on DEV93 and EVAL92 compared to adding either IVEC or
BSV alone. Overall, the ‘BSV(100) + IVEC(25)’ speaker represen-
tation achieved 9.3%, 0.7% and 4.8% relative WER reductions over
the baseline SI system on the three test sets, respectively. Note that
the DEV93 development test set was collected with the training data
and therefore may have a closer recording condition to the training
data as compared to EVAL92 and EVAL93. This might explain the
smaller gains on EVAL92 and EVAL93. Significance tests show that
all the performance differences among all the systems on EVAL92
and EVAL93 were statistically insignificant.

4.3. First order bottleneck speaker supervectors

Table 2 compares the results of using the BSV and the first-order
BSSV as the speaker representation. The first-order BSSV is ex-
tracted according to the process described in Section 3.2. In this
work, the phonetic classes correspond to the 40 monophones. A
triphone DNN is used to predict the triphone state posteriors, which
are then mapped to the monophone posteriors and used as the
soft-alignments for the phonetic classes, v.(t). The first-order
BSSV(25) is obtained by expanding BSV(25), which leads to a
1000-dimensional speaker representation (40 x 25). Based on
the results, BSSV(25) achieved a larger improvement compared to
BSV(25) on DEV93. A slight degradation was observed on EVAL92
and the improvement on EVAL93 was marginal. Significance tests
show that BSSV(25) is significantly better than BSV(25) on DEV93
but the improvements on EVAL92 and EVAL93 were not significant.
This suggests that the proposed BSSV may be more effective when
there is less mismatched between the training and testing conditions.
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| Speaker Representation H DEV93 [ EVAL92 [ EVAL93 ‘

None 8.3 4.4 7.2
FMLLR 7.3 4.1 6.8
LDA + AFMLLR 7.1 4.2 6.6
+ BSV(100) 7.0 4.1 6.4
+ BSV(100) + IVEC(25) 7.1 4.0 6.5
+ First-order BSSV(25) 7.0 3.9 6.5

Table 3. WER of FMLLR-shifted features for speaker normalisation

4.4. FMLLR-shifted features

The results for incorporating the FMLLR-shifted features (AFMLLR)
are shown in Table 3. In this work, the FMLLR feature extraction
is performed as follows. Linear Discriminant Analysis (LDA) is
first used to reduce the acoustic feature dimension and the LDA-
transformed features are then used to estimate the FMLLR trans-
form. So, the FMLLR-shifted features are computed as the dif-
ference between the LDA-transformed and FMLLR-transformed
features. From Table 3, it is observed that training DNN using the
FMLLR transformed features yield relative WER improvements of
12.1%, 7.1% and 5.5% on the three test sets, respectively. In fact,
these results are comparable or better than all the results reported
in Table 1 and Table 2. This shows the effectiveness of FMLLR
in removing speaker variabilities in the data. If the DNN is trained
using the AFMLLR features appended to the LDA-transformed
features, instead of using the FMLLR transformed features, further
improvements of about 0.2% absolute can be achieved on DEV93
and EVAL93. However, the performance on EVAL92 is slightly
worse. This suggests that the AFMLLR features do contain some
useful information that the DNN can exploit.

In the last three rows of Table 3, we examined the complemen-
tariness between the AFMLLR features and the other global speaker
representations. In most cases, combining the LDA + AFMLLR
features with the other speaker representations improved the ASR
performance. The overall best configuration is achieved by combin-
ing AFMLLR with the first-order BSSV(25), yielding 7.0%, 3.9%
and 6.5% WERs on the three test sets, respectively. These translates
to 10.0%—-15.3% relative WER reductions compared to the ST DNN
system and 3.6%—4.7% relative WER reductions compared to the
FMLLR DNN system.

5. CONCLUSIONS

This paper has investigated several forms of speaker representation
that can be augmented to the acoustic features to train DNN-based
acoustic models for robust automatic speech recognition. The in-
corporation of such speaker-level information lets the DNNs learn
the appropriate parameters to implicitly compensate for any speaker
variability found in the speech data. Firstly, we examined the Bot-
tleneck Speaker Vector (BSV) representation, which is obtained by
averaging the speaker bottleneck features over each speaker. Next,
we improved BSV by expanding it into a phonetic-class-dependent
bottleneck speaker super vector (BSSV), where phone posteriors are
used to accumulate first-order BSV statistics. Finally, we proposed
using the FMLLR-shifted features as a frame-dependent speaker
representation to introduce more detailed speaker information for
the DNN to exploit. Experimental results on the WSJO and WSJ1
datasets show that these speaker representations achieved compara-
ble or better performance compared to the existing i-vector speaker
representation. Besides, adding more than one speaker represen-

tation also led to further performance improvements.

The best

configuration is achieved by combining the FMLLR-shited features
and the first-order BSSV, which gave 10.0%-15.3% relative WER
reduction over the baseline DNN system.
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