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ABSTRACT

Recently, a novel speaker adaptation method was proposed that ap-
plied the Speaker Adaptive Training (SAT) concept to a speech rec-
ognizer consisting of a Deep Neural Network (DNN) and a Hid-
den Markov Model (HMM), and its utility was demonstrated. This
method implements the SAT scheme by allocating one Speaker De-
pendent (SD) module for each training speaker to one of the inter-
mediate layers of the front-end DNN. It then jointly optimizes the
SD modules and the other part of network, which is shared by all
the speakers. In this paper, we propose an improved version of the
above SAT-based adaptation scheme for a DNN-HMM recognizer.
Our new training adopts a Linear Transformation Network (LTN)
for the SD module, and such LTN employment leads to more ap-
propriate regularization in both the SAT and adaptation stages by
replacing an empirically selected anchorage of a network for regu-
larization in the preceding SAT-DNN-HMM with a SAT-optimized
anchorage. We elaborate the effectiveness of our proposed method
over TED Talks corpus data. Our experimental results show that
a speaker-adapted recognizer using our method achieves a signifi-
cant word error rate reduction of 9.2 points from a baseline SI-DNN
recognizer and also steadily outperforms speaker-adapted recogniz-
ers, each of which originates from the preceding SAT-based DNN-
HMM.

Index Terms— Speaker Adaptive Training, Deep Neural Net-
work, Linear Transformation Network

1. INTRODUCTION

Speaker adaptation is one of the most important approaches to
achieving high performing speech recognition. Recently, with
the advent of a new hybrid approach that combines a Deep Neu-
ral Network (DNN) and a Hidden Markov Model (HMM) to
speech recognition [1, 2, 3], several speaker adaptation methods
using the hybrid DNN-HMM recognizer have been investigated
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. An approach that applies
the Speaker Adaptive Training (SAT) concept [15] to the DNN-
HMM recognizer has been proved especially effective for increasing
DNN’s adaptability [4, 5, 6].

The SAT-based DNN-HMM speech recognition approaches are
mainly divided into the following two groups. In the first group
[5, 6], the SAT scheme was implemented by combining the Gaussian
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Mixture Model (GMM)-based speaker normalization in such input
feature space as cMLLR [16] with the DNN-learning-based classifier
design. In the second group [4], the SAT scheme was implemented
by allocating one Speaker Dependent (SD) module for each training
speaker to one of the intermediate DNN layers. The method then
jointly optimized the SD modules and the remaining part of the net-
work1, which was shared by all the training speakers, with changing
a pair comprised of the SD module and its corresponding training
speaker in a speaker-by-speaker manner. The effectiveness of this
SAT-based DNN training scheme, which we call the SAT-DNN-SD
method in this paper, was clearly demonstrated through systematic
experiments [4]. Also, in comparison with the first-group methods,
the SAT-DNN-SD method has an obvious advantage. It can consis-
tently apply the DNN’s high learning capability to speaker normal-
ization and classifier design in the SAT-based framework.

However, the SAT-DNN-SD method still has room for improve-
ment. For example, it used a Speaker Independent (SI) DNN, which
was trained in a speaker independent mode, as an anchorage state
in the regularization of the SAT stage. This might have decreased
the adaptability of SAT due to a large restriction from the SI-DNN.
In addition, in the speaker adaptation stage, it just empirically ini-
tialized the SD module using a one-layer network that was extracted
from the SI-DNN and retrained with the SAT-optimized SI network
over the speech data of all the training speakers. This initialized SD
module was denoted using the term “mean” because it represents a
certain kind of mean speaker model [4]. Due to the lack of theoret-
ical rationale in such usage, alternatives to SI-DNN and the mean
speaker model will probably further improve the adaptation results.

Motivated by the above research, we extend in this paper our
previously proposed SAT-based speaker adaptation scheme with the
original DNN [4], i.e., the SAT-DNN-SD method, by embedding a
Linear Transformation Network (LTN) [17, 18, 19] in DNN. In con-
trast to the SAT-DNN-SD method [4], our new method with LTN
dynamically changes the anchorage state of the network weight and
bias parameters in the regularization along the training progress of
SAT and automatically provides, in a natural way, the initial status
of an SD module that is used for a new speaker in the speaker adap-
tation step.

In subsequent sections, we formulate our proposed method and
experimentally elaborate its effectiveness in a difficult TED Talks
corpus data task. We also compare the results of our proposed
method and the SAT-DNN-SD method.

1For descriptive purposes, we refer to this remaining part of DNN as a
Speaker Independent (SI) network.
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Fig. 1. SAT procedure with Linear Transformation Network

2. SAT-BASED SPEAKER ADAPTATION WITH
LTN-EMBEDDED DNN

The structure of an LTN-embedded DNN is illustrated in Fig. 1,
where the SAT procedure for this new type of network is also shown.
We assume that our DNN has seven layers (L0,L1, . . . ,L6), and for
illustration simplicity, no biases are depicted. Because of the multi-
layer structure, LTN can be allocated to any of the layers through L1

to L6. In the figure, as an example, we allocate LTN as SD modules,
i.e., A1

2, A
2
2, . . . , A

S
2 , to the second layer (L2), where S is the num-

ber of speakers in the training dataset and As
2 is the weight matrix

of the LTN inserted into L2 for training speaker s; Wl is the weight
matrix of the original DNN between Ll and Ll−1.

2.1. Speaker adaptive training step

In the following for discussion simplicity, we denote the layer to
which the SD modules are allocated as LlSD . From Fig. 1, the
outputs from LlSD , which is referred to as zlSD , is given as follows:

zlSD = WlSD (AlSDzlSD−1 + alSD ) + blSD , (1)

where AlSD and alSD are the weight matrix of the LTN inserted
into L2, and its corresponding bias vector, respectively.

In the SAT procedure, we first initialize our DNN’s parameters,
{Wl,bl}(l = 1, 2, · · · , L), using the network parameters of SI-
DNN. We next insert LTNs as SD modules, one for each training
speaker, into one of the inner layers of our DNN. Then the param-
eters to be updated for the SD module corresponding to training
speaker s are represented as As

lSD
,as

lSD
, and based on the SAT con-

cept, they are updated by the following equation:

(Λ,A
SDs
lSD

,aSDs
lSD
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lSD
,aSDs

lSD
)

E(Λ,ASDs
lSD

,aSDs
lSD
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β

2
R(ASDs

lSD
,aSDs

lSD
), (2)

where

R(ASDs
lSD

,aSDs
lSD

) =

S∑
s=1

(
∥As

lSD
− IlSD∥2+ ∥as

lSD
− 0lSD∥2

)
, (3)

Λ = {W1, · · · ,WL,b1, · · · ,bL}, ASDs
lSD

= {A1
lSD

, · · · ,AS
lSD

},
aSDs
lSD

= {a1
lSD

, · · · ,aS
lSD

}, E is a loss function, R is a regular-
ization term, β is its regularization coefficient, L is the number of
network layers except the input layer, IlSD is an identity matrix,

Fig. 2. SAT procedure with the original DNN

0lSD is a zero vector, ∥ · ∥2 is L2 norm, and Λ is a resultant trained
state of Λ.

Since the size of the speech data from one speaker is usually lim-
ited, this often makes the SD modules over-fit the data. To alleviate
this over-fitting problem, we introduce for LTN the regularization
term shown in Eq. 3. The term works so that As

lSD
and as

lSD
do not

differ too much from the identity matrix and the zero vector, respec-
tively. Note here that the identity matrix and the zero vector work
as an anchorage for regularization, which frees our SAT-optimized
DNN from SI-DNN constraints. The linearity of the SD module
virtually replaces the anchorage state of the network in the regular-
ization term, which is originally the identity matrix (i.e., IlSD ), with
the DNN’s weight matrix (i.e., WlSD ). Clearly, the DNN’s weight
matrix alters along the course of the SAT progress. Then the net-
work’s anchorage state in the regularization also alters and comes
close to a SAT-optimized network, which is different from the part
of SI-DNN that was used in a previously proposed SAT-DNN-SD
method [4]. This new feature of dynamically changing the anchor-
age state is expected to make the training of the linear SD module
more suited to speaker adaptation, because the anchorage itself is
optimized for SAT. The above virtual replacement holds for the bias
vector.

Similar to the training for SAT-DNN-SD [4], we dynamically
switched the node connections between an inserted SD module and
its adjacent layers in conjunction with the speaker selection in the
training data. For example, in Fig. 1, we only execute the training
along the green solid line when using the data of speaker 1. Note that
each SD module is trained only using its corresponding speaker’s
data, but the other part of the network is trained using the data of
all speakers. Also, we adopt Error Back Propagation (EBP) training
[20] with Cross Entropy (CE) loss.

2.2. Speaker adaptation step

In the speaker adaptation step, the above SAT procedure is expected
to increase the adaptability of the entire network by only adapting
the LTN module, which corresponds to the SD module, using a tar-
get speaker’s speech data. The parameters of the SD module for tar-
get speaker t are represented as At

lSD
and at

lSD
. Then the speaker

adaptation procedure is defined as follows:

(A
t
lSD

,at
lSD
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arg min
(At
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where

R(At
lSD

,at
lSD

) = ∥At
lSD

− IlSD∥2+ ∥at
lSD

− 0lSD∥2, (5)

In the adaptation step, we only adapt At
lSD

and at
lSD

using the
target speaker’s speech data. Note that the other weights all are fixed.
In this step too, we adopt the EBP training with the CE loss.

2.3. Advantage of proposed scheme over previous SAT-DNN-SD

A previously proposed SAT-DNN-SD procedure [4] is illustrated in
Fig. 2. The difference between this original SAT-DNN-SD and our
proposed scheme, which we call SAT-DNN-LTN, originates from
different SD module types.

In the original SAT-DNN-SD scheme, the SD module parame-
ters for training speaker s are represented as Ws

lSD
and bs

lSD
. Then

the SAT stage is formulated as follows:
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Λ∗ = {W1, · · · ,WlSD−1,WlSD+1, · · · ,WL,b1, · · · ,
blSD−1,blSD+1, · · · ,bL}, WSDs

lSD
= {W1

lSD
, · · · ,WS

lSD
}, and

bSDs
lSD
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lSD

, · · · ,bS
lSD

}. The regularization term here depends
on the SI-DNN parameters.

In successive adaptation steps, the parameters of the SD module
for target speaker t are also represented as Wt

lSD
and bt

lSD
, and

then the speaker adaptation procedure is formulated as follows:
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Wmean
lSD

and bmean
lSD

are the initial states of the SD module in the
adaptation step. See [4] for the initialization process.

In the SAT step, the SAT-DNN-SD method used the regulariza-
tion term based on the SI-DNN parameters. However, since there
are no theoretical bases for directly linking the SAT step with the SI-
DNN parameters, they are not necessarily suited for the anchorage
state of the network parameters in the SAT step’s regularization. On
the other hand, our proposed SAT-DNN-LTN uses the regularization
term in Eq. 3, leading to a merit where the regularization term can
use a network’s anchorage state that better fits the SAT optimization
framework.

In the speaker adaptation step, the SAT-DNN-SD method must
prepare the initial status of SD module parameters Wmean

lSD
and

bmean
lSD

. In contrast, our proposed SAT-DNN-LTN method automat-
ically produces, through the SAT step, parameters WlSD and blSD

that correspond to the initial status of the SD module for the speaker
adaptation step (Eq. 2) . The speaker adaptation step of our SAT-
DNN-LTN method is expected to perform based on a more suitable
anchorage state of the network parameters in the regularization.

3. EXPERIMENTS

3.1. Conditions

3.1.1. Speech data corpus and acoustic feature representation

We tested our proposed method on the difficult lecture speech data
of the TED Talks corpus under the supervised adaptation setups. We
prepared three datasets: training, evaluation, and testing.

The training dataset consisted of the speech data of 300 speak-
ers; each speaker’s data were about 30 minutes. The total length
of the training data was about 150 hours. The evaluation dataset
consisted of the speech data of ten speakers. The testing dataset
consisted of the speech data of 28 speakers, which was used for the
IWSLT2013 testing dataset.

The acoustic feature vector consisted of 12 MFCCs, logarithmic
power (log-power), 12 ∆ MFCCs, ∆ log-power, 12 ∆∆ MFCCs,
and ∆∆ log-power, where MFCC stands for the Mel-scale Fre-
quency Cepstrum Coefficient, ∆ is the first derivative, and ∆∆
is the second derivative. The dimensions of the acoustic feature
vectors were 39. Then 11 concatenated acoustic feature vectors
(429 dimensions) were used as input to the DNN’s front-end. Each
element of the 429-dimensional input vector was normalized so that
its mean and variance became 0 and 1, respectively.

3.1.2. Adopted recognizers

To evaluate our SAT-DNN-LTN method, we compared the perfor-
mance derived by the Speaker-Adapted SAT-DNN-LTN (SA-SAT-
L) recognizer with those produced by the baseline SI-DNN recog-
nizer, the Speaker-Adapted SI with the LTN (SA-SI-L) recognizer,
the Speaker-Adapted SI (SA-SI-SD) recognizer, and the Speaker-
Adapted SAT-DNN-SD (SA-SAT-SD) recognizer.

The SA-SI-L and SA-SAT-L recognizers were adapted using
LTN. The SA-SI-L recognizer was developed using SI-DNN as an
initial state of the recognizer in the speaker adaptation step. The
SA-SAT-L recognizer was developed based on the SAT-DNN-LTN
method. In the speaker adaptation step with LTN, the SA-SI-L rec-
ognizer was implemented by inserting LTN into one of the SI-DNN’s
intermediate network layers, which corresponded to an SD module
and adapting it using the speech data of an adaptation target speaker
that was selected from the 28 testing speakers. In this adaptation
step, we applied the regularization term of Eq. (5) to the update of
the weights and biases of layer lSD .

The SA-SI-SD and SA-SAT-SD recognizers were adapted using
the original DNN. The SA-SI-SD recognizer was developed using
SI-DNN as an initial state of the recognizer in the speaker adap-
tation step. The SA-SAT-SD recognizer was developed using the
SAT-DNN-SD method. In the speaker adaptation step with the orig-
inal DNN, the SA-SI-SD recognizer was implemented by adapting
one of the SI recognizer’s intermediate network layers, which cor-
responded to a SD module. In this adaptation, we applied the regu-
larization term of Eq. (9) to the update of the weights and biases of
layer lSD , changing Wmean

lSD
to WSI

lSD
and bmean

lSD
to bSI

lSD
.

The DNN module in our recognizers had seven layers and con-
sisted of 429 input nodes, 4909 output nodes, and 512 nodes for all
of the intermediate layers. We selected one from the five intermedi-
ate layers (L1,L2, . . . ,L5) as an SD module allocation or insertion
layer in the adaptation stage of either the SA-SI recognizers (SA-SI-
SD and SA-SI-L) or the SA-SAT recognizers (SA-SAT-SD and SA-
SAT-L). We also elaborated the layer selection effect in the speaker
adaptation by changing a selected layer from the 1st through the 5th
intermediate layers to analyze the role of the intermediate layer in
feature representation.
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Table 1. Experimental results with SI-DNN recognizer and four dif-
ferent speaker-adapted DNN-based recognizers (word error rate [%])

lSD SI-DNN SA-SI-SD SA-SAT-SD SA-SI-L SA-SAT-L

1 26.4 20.0 18.9 20.8 20.5
2 26.4 19.0 18.2 19.3 17.2
3 26.4 18.7 18.0 19.0 17.5
4 26.4 19.0 18.4 19.0 17.5
5 26.4 19.5 19.0 19.2 18.0

In all of our recognizers, the HMM part used a 4-gram lan-
guage model that was trained over the transcriptions of TED Talks,
News Commentary, and English Gigaword [21] and used a context-
dependent acoustic model that was trained with Boosted MMI train-
ing. During the DNN training, all of the HMM parameters were
fixed, such as the language model and the state transition probabili-
ties.

To circumvent the problem of closed-form evaluation, we di-
vided the speech data of every testing speaker into four subgroups
and obtained recognition results in the four-times cross-validation
(CV) scheme. In it, we used one of the subgroups for testing and the
three remaining subgroups for adaptation and obtained the average
recognition accuracies by changing a subgroup for the four testings.

3.1.3. Hyper-parameter settings

Since DNN training sometimes requires careful control of the learn-
ing rate, we controlled it at each training epoch, which denoted the
EBP training that used all of the training samples just once, using the
following rule based on the recognition accuracies over the evalua-
tion data. If the recognition error decreased over the evaluation data,
the learning rate was kept the same as in the previous epoch. Oth-
erwise, it was halved, and the network parameters, i.e., the weights
and biases, were replaced with those that produced the minimum
recognition error rate in the preceding training epochs, and the train-
ing for these replaced weights and biases were restarted using the
halved learning rate. In the SAT step, we adapted each SAT-DNN
(SAT-DNN-SD or SAT-DNN-LTN) recognizer and evaluated its per-
formance over the evaluation data at each training epoch. We con-
trolled the learning rate based on the recognition accuracies over the
evaluation data. In contrast, in the adaptation stage where only the
SD module was updated, the learning rate was simply set to a fixed
value that was selected based on the recognition accuracies over the
evaluation data.

The hyper-parameters of baseline SI-DNN, SA-SI-SD, and SA-
SAT-SD were set as previously described [4]. In the SAT step, the
initial value of the learning rate was set to 0.004, the number of
training epochs was 50, and the regularization coefficient (β) was
set to 0.1 when inserting LTN into L1 and to 10.0 when inserting
LTN into L2 through L5. In the speaker adaptation step, we selected
a learning rate of 0.00001 and a regularization coefficient of 0.1 for
inserting LTN into L1. On the other hand, we selected a learning
rate of 0.00005 and a regularization coefficient of 10.0 in the case
of inserting LTN into L2 through L5. These adaptation procedures
were repeated ten times, corresponding to ten epochs.

3.2. Results and discussions

Table 1 shows the recognition performances of the five tested recog-
nizers: SI-DNN, SA-SI-SD, SA-SAT-SD, SA-SI-L, and SA-SAT-L
(our method proposed in this paper). Each error rate for the SA-SI-
SD, SA-SAT-SD, SA-SI-L, and SA-SAT-L recognizers is the average
value obtained by the previously described CV scheme. In the table,

lSD is the number of layers to which the SD module was allocated
or inserted.

The SA-SAT-L recognizer achieved the lowest error rate, 17.2%,
which corresponded to 9.2 point reduction from the error rate of the
baseline SI-DNN recognizer.

Comparisons of the SA-SI-SD and SA-SAT-SD recognizers
and comparisons of the SA-SI-L and SA-SAT-L recognizers clearly
demonstrate the effectiveness of the SAT training concept. Regard-
less of the layer to which the SD module was allocated or inserted,
the SA-SAT recognizers outperformed the SA-SI recognizers.

A comparison between the speaker adaptation scheme with LTN
and that with the original DNN also shows the following two aspects:
1) the SA-SI-L recognizer achieved almost the same performance as
the SA-SI-SD recognizer, although the allocation of the SD module
slightly affected their performances; 2) our proposed SA-SAT-L rec-
ognizer stably outperformed its counterpart SA-SAT-SD recognizer
in all cases except when the SD module was allocated or inserted to
L1. As described in section 2.3, our proposed SAT-DNN-LTN dy-
namically estimates WlSD and blSD , which are anchorage states of
network parameters in the regularization of the SAT step, and auto-
matically estimates WlSD and blSD , which are the initial states of
a SD module in the speaker adaptation step. Based on these proper-
ties, we expect that our SA-SAT-L performed the SAT and speaker
adaptation steps using a more appropriate anchorage state of network
parameters in the regularization.

When inserting LTN as an SD module into L1, speaker adapted
recognizers with LTN (SA-SI-L and SA-SAT-L) were slightly de-
graded, perhaps because at L1, the number of LTN parameters was
smaller than that of the original DNN parameters.

The table also shows a quite interesting finding. The adaptation
using the SD module allocated to the central inner layers such as the
3rd layer outperformed that using the SD module to the layers near
the input or output of the network such as the 1st and 5th layers. This
phenomenon appeared commonly in such speaker-adapted recogniz-
ers as SA-SAT-SD and SA-SAT-L. The result clearly suggests that it
is important to balance the layers, or their corresponding weight and
bias parameters, to the front and back of the SD module. This must
be further investigated by analyzing such functional roles as feature
transformation and classification played by the inner layers.

4. CONCLUSION

In this paper, we proposed an alternative speaker adaptation scheme
for a DNN embedding Linear Transformation Network (LTN) that
applied the SAT concept (SAT-DNN-LTN) and experimentally elab-
orated its effectiveness in a difficult TED Talks corpus data task. Our
experimental results showed that our proposed SAT-based speaker
adaptation scheme that embedded LTN stably outperformed the pre-
viously proposed SAT-based speaker adaptation scheme with the
original DNN (SAT-DNN-SD) [4]. Based on the formulation of
our proposed scheme, our SAT-DNN-LTN dynamically estimated
the anchorage states of network parameters in the regularization of
the SAT step and automatically estimated the initial states of a SD
module in the speaker adaptation step. Therefore, we can expect that
our SAT-DNN-LTN performed the SAT and speaker adaptation steps
using a more appropriate anchorage state of network parameters in
the regularization. We also consider that this new mechanism played
a key role in increasing the performances of our proposed method.

Future work will include an evaluation under unsupervised adap-
tation setups. Applying a sequence training concept [22] to our
proposed SAT scheme will also be an interesting research topic for
achieving higher performance.
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