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ABSTRACT

It has been previously shown that, when both acoustic and artic-

ulatory training data are available, it is possible to improve phonetic

recognition accuracy by learning acoustic features from this multi-

view data with canonical correlation analysis (CCA). In contrast with

previous work based on linear or kernel CCA, we use the recently

proposed deep CCA, where the functional form of the feature map-

ping is a deep neural network. We apply the approach on a speaker-

independent phonetic recognition task using data from the University

of Wisconsin X-ray Microbeam Database. Using a tandem-style rec-

ognizer on this task, deep CCA features improve over earlier multi-

view approaches as well as over articulatory inversion and typical

neural network-based tandem features. We also present a new sto-

chastic training approach for deep CCA, which produces both faster

training and better-performing features.

Index Terms— multi-view learning, neural networks, deep

canonical correlation analysis, XRMB, articulatory measurements

1. INTRODUCTION

Modern speech recognizers often use deep neural networks (DNNs)

trained to predict the posterior probabilities of phonetic states [1].

In the two most common approaches, either (1) the DNN outputs

are scaled by the state priors and used as an observation model in

a hidden Markov model (HMM)-based recognizer (the hybrid ap-

proach [2]) or (2) the outputs of some layer of the network (possibly

a narrow “bottleneck” layer or the final layer) are post-processed and

used as acoustic features in an HMM system with a Gaussian mix-

ture model (GMM) observation distribution (the tandem approach

[3]). Working within the tandem approach, we investigate whether

we can learn better DNN-based acoustic features via unsupervised

learning using an external set of unlabeled multi-view data, in our

case simultaneously recorded audio and articulatory measurements.

The idea of feature learning using multi-view data has been ex-

plored previously using canonical correlation analysis (CCA) [4] and

its nonlinear extension kernel CCA (KCCA) [5, 6]. Here we propose

to use the recently devloped deep CCA (DCCA) approach, which

differs from linear/kernel CCA in that the feature mapping is imple-

mented with a DNN rather than a linear/kernel function. Consider-

ing the earlier successes of CCA/KCCA, and the general success of

DNNs for speech tasks, it is a natural question whether multi-view

feature learning can benefit from the more flexible functional form of

a DNN. We investigate this question, using data from the University

of Wisconsin X-ray Microbeam Database (XRMB) [7], on speaker-

independent phonetic recognition in a setting where no articulatory

data is available for the recognizer training speakers. We find that

DCCA indeed improves over previous CCA-based features, as well
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as over DNN-based articulatory inversion and over standard DNN-

based features trained on the recognizer’s training data. We extend

previous DCCA work by proposing and testing a new faster stochas-

tic training method and by comparing various network architectures.

In the following sections, we give a unifying review of several

CCA variants (Section 2) and present deep CCA along with its train-

ing procedure (Section 3); describe related work (Section 4); present

experimental results comparing DCCA to various alternatives (Sec-

tion 5); and discuss ongoing and future work (Section 6).

2. A UNIFYING OVERVIEW OF CCA VARIANTS

We first review canonical correlation analysis (CCA), unifying the

formulation of linear and nonlinear (kernel and deep) CCA, so as to

clarify their relationships and put deep CCA in context. In a multi-

view learning scenario, we have access to different types of mea-

surements of the same underlying signal, such as audio+articulation,

audio+video, images+text, or text in two languages [8, 9, 10, 11].

In our setting, the training data consist of pairs of observations

{(xi,yi)}
N
i=1, where xi ∈ R

Dx and yi ∈ R
Dy represent in-

put features computed over one frame of simultaneously recorded

acoustics and articulation. We also denote X = [x1, . . . ,xN ],
Y = [y1, . . . ,yN ].

Suppose we have some (possibly nonlinear) feature mappings

f : RDx → R
dx and g : RDy → R

dy for view 1 and view 2 re-

spectively. The dimensionalities dx and dy are arbitrary and could

be infinite, e.g. if we use feature mappings induced by kernels in

a Reproducing Kernel Hilbert Space (RKHS). One popular way of

learning a compact representation from multi-view data is via CCA

[12]. The objective of CCA is to find L ≤ min(dx, dy) pairs of

linear projection vectors U ∈ R
dx×L and V ∈ R

dy×L such that the

projections of each view are maximally correlated with their counter-

parts in the other view, constrained such that the dimensions in the

representation are uncorrelated with each other. There are a number

of equivalent ways of writing the objective, one of which is

max
U,V

1

N
tr
(

U
⊤
FG

⊤
V
)

(1)

s.t. U
⊤

(

FF⊤

N
+ rxI

)

U = V
⊤

(

GG⊤

N
+ ryI

)

V = I,

where F = f(X) = [f(x1), . . . , f(xN )] ∈ R
dx×N , G = g(Y) =

[g(y1), . . . ,g(yN )] ∈ R
dy×N , and (rx, ry) ≥ 0 are regularization

parameters (we assume that F and G are centered at the origin for

notational simplicity; if they are not, we can center them as a pre-

processing operation). If we use the original input data without fur-

ther feature extraction, i.e. F = X and G = Y, then we recover the

linear CCA objective. Let Σ12 = 1

N
FG⊤, Σ11 = 1

N
FF⊤ + rxI

and Σ22 = 1

N
GG⊤ + ryI be the cross- and (regularized) auto-

covariance matrices of the feature-mapped data in the two views. It

can be shown that the optimal value of (1) is the sum of the top L

singular values of the matrix T = Σ
−1/2
11

Σ12Σ
−1/2
22

. Letting Ũ and

Ṽ be the matrices of the first L left and right singular vectors of T,
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Fig. 1. Schematic diagram of deep canonical correlation analysis.

the optimum of (1) is achieved by (U,V) = (Σ
−1/2
11

Ũ,Σ
−1/2
22

Ṽ).
As a result, when the feature mappings f and g are fixed, the pro-

jection matrices U and V can be computed in closed form via sin-

gular value decomposition (SVD) of the dx × dy matrix T. The

final CCA features (projections) are f̃(x) = U⊤f(x) for view 1 and

g̃(y) = V⊤g(y) for view 2.

One can show that (1) is equivalent to the following (by switch-

ing max(·) with min−(·), and adding 1/2 times the constraints):

min
U,V

1

2(N)

∥

∥

∥
U

⊤
F−V

⊤
G

∥

∥

∥

2

F
+

rx
2

‖U‖2F +
ry
2

‖V‖2F (2)

s.t. the same constraints in (1).
In other words, CCA minimizes the squared difference between the

projections of the two views, subject to whitening constraints. Un-

der certain assumptions on the input distributions, CCA maximizes

mutual information [13] and has a probabilistic interpretation [14].

The above formulation encompasses several variants. First, we

have already mentioned that the formulation is exactly the origi-

nal (linear) CCA when f and g are identity mappings. In order to

learn richer features, one may use nonlinear mappings. One non-

linear approach is kernel CCA (KCCA), corresponding to choosing

f(x) = kx(x, ·) and g(y) = ky(y, ·) where kx and ky are positive-

definite kernel functions (e.g., Gaussian RBF kernel k(a,b) =

e−‖a−b‖2/2s2 where s is the kernel width) [15, 16]. From the rep-

resenter theorem of reproducing kernel Hilbert spaces (RKHS), we

know that the solution of (1) has the form U =
∑N

i=1
αikx(xi, ·)

and V =
∑N

i=1
βiky(yi, ·) where αi,βi ∈ R

L, i = 1, . . . , N , and

the final CCA mapping can be written as f̃(x) =
∑N

i=1
αikx(x,xi)

and g̃(y) =
∑N

i=1
βiky(y,yi). Therefore one can conveniently

work with Gram matrices instead of infinite dimensional RKHS

space and optimize over the coefficients {αi}
N
i=1 and {βi}

N
i=1 by

solving an eigenvalue problem of size N×N . Note that (rx, ry) > 0
are needed to avoid trivial solutions. Kernel CCA is computationally

challenging for large data sets due to the N×N eigenvalue problem,

for which approximate or iterative solutions are often needed [5, 17].

3. DEEP CCA

If we implement the feature mappings f and g of Section 2 with neu-

ral networks, this results in deep CCA (DCCA) [18], illustrated in

Figure 1. A K-layer neural network implements the nested mapping

f(x) = fK(· · · f1(x;W1) · · · );WK), where Wj are the weight pa-

rameters (biases at each layer can be absorbed in Wj by appending

an extra 1 to its input) of layer j, j = 1, . . . ,K, and fj is the map-

ping of layer j which takes the form of a linear mapping followed by

a (typically nonlinear) element-wise activation: fj(t) = σ(W⊤
j t).

In DCCA, we learn weights W = {W1, . . . ,WK} that optimize

the canonical correlations at the output layers:

min
Wf ,Wg,U,V

−
1

N
tr
(

U
⊤
F(X;Wf )G(Y;Wg)

⊤
V
)

(3)

s.t. the same constraints in (1),

where we have made explicit the dependence of F and G on their

inputs and weight parameters Wf ,Wg. Another ℓ2 regularization

term λ(‖Wf‖
2 + ‖Wg‖

2) may be added to the objective. The pro-

jections (U,V) can be regarded as adding an extra linear layer on

top of (f ,g) respectively. The final DCCA features (projections)

are f̃(x) = U⊤f(x) for view 1 and g̃(y) = V⊤g(y) for view 2.

Although both KCCA and DCCA provide nonlinear feature

transformations, they differ in their functional forms. KCCA is

nonparametric and linearly combines “similarities” between the test

sample and each training sample (through the kernel). In contrast,

DCCA is parametric and transforms a test sample through layers

of linear mapping and nonlinear activations. The parametric form

of DCCA makes it typically faster to train and test for data sets of

reasonable sizes for speech tasks.

3.1. Stochastic optimization of deep CCA

The DCCA objective (3) differs from typical DNN regression or

classification training objectives. Typically, the objectives are un-

constrained and can be written as the expectation (or sum) of error

functions (e.g., squared loss or cross entropy) incurred at each train-

ing example. This property naturally suggests stochastic gradient

descent (SGD) for optimization, where one iteratively estimates the

gradient based on one or a few training examples (a minibatch) and

takes a small step in the opposite direction. However, in (3) there

are two networks, and the objective can not be written as an uncon-

strained sum of errors. The difficulty lies in the fact that the training

examples are coupled through the covariance matrices, which can

not be reliably estimated with only a small amount of data. When in-

troducing deep CCA, Andrew et al. [18] used a full batch algorithm

(L-BFGS) for optimization. This is undesirable for applications with

large training sets, as each gradient step computed on the entire train-

ing set can be very expensive in both memory and time. In contrast,

here we use a more efficient SGD and show that it works well even

for this type of objective if larger minibatches are used, presumably

because a large minibatch contains enough information to estimate

the covariances and therefore the gradient accurately enough. We

first give a brief derivation of the gradient.

Note that U and V have a closed-form solution for fixed

f and g as discussed in Section 2. Substituting that solution

into our objective, we obtain tr
(

U⊤FG⊤V
)

=
∑L

j=1
σj(T),

where σj(T), j = 1, . . . , L are the L largest singular values of

T = Σ
−1/2
11

Σ12Σ
−1/2
22

. Let T = ŨDṼ⊤ be the rank-L SVD

of T. Then the gradient of the total correlation with respect to the

feature matrix is [18]

∂
∑L

j=1
σj(T)

∂F
=

1

N
(2∆11F+∆12G),

with ∆11 = − 1

2
Σ

−1/2
11

ŨDŨ⊤Σ
−1/2
11

, ∆12 = Σ
−1/2
11

ŨṼ⊤Σ
−1/2
22

,

and ∂
∑L

j=1
σj(T)/∂G has an analogous expression. We then

compute the gradient with respect to Wf and Wg through standard

backpropagation. Given the gradient ∇W of our objective (3) with

respect to all weight parameters W = [Wf ;Wg] evaluated on

minibatches, our weight update takes the following form:

∆W
t = µt∆W

t−1 − ǫt∇W and W
t = W

t−1 +∆W
t

where µt ∈ [0, 1) and ǫt are the momentum parameter and learning

rate at step t (although we use a fixed learning rate and momentum

in our experiments). We run SGD until the total correlation stops

improving on a held-out validation set.

4. RELATED WORK

If we use the identity mapping for g̃ without feature extraction for

view 2, and remove the whitening constraints in (2), our objective
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becomes minf̃ ||f̃(X)−Y||2, which learns a network f̃ to predict

articulatory measurements Y from acoustics X with a least-squares

loss. This corresponds to articulatory inversion with a DNN, which

has been used for speech recognition using different types of artic-

ulatory features [19, 20, 21]. A natural baseline against which to

compare our CCA-based approaches is to use the outputs of such an

articulatory inversion network as additional features for recognition.

CCA and KCCA have been successfully used in various non-

speech domains [13, 9] as well as for speech recognition [4, 6].

While KCCA features work better than linear CCA for speech

recognition, the bottleneck is a solver that scales to reasonably large

data sets. Arora and Livescu use an incremental low-rank SVD ap-

proximation of the kernel matrices to reduce complexity [5], which

helps to scale up KCCA to larger but not very large data sets. Re-

cently, Lopez-Paz et al. have proposed a potentially more scalable

approach [17], which approximates kernel operations with ℓ2 metric

operations on transformed inputs using random Fourier features [22].

Huang et al. also show that random Fourier features perform well for

phonetic frame classification, matching the performance of DNNs

on TIMIT [23]. A key problem with this approach, however, is

the need to use a very large number of random features, leading to

non-trivial optimization of large ℓ2 problems. Though this difficulty

can be somewhat alleviated by ensemble models in the classification

setting [23], it is less clear how to apply the ensemble idea to KCCA.

In our experiments (presented in the following section), we indeed

find that computation remains a limitation for randomized KCCA.

5. EXPERIMENTS

We experiment with data from the XRMB corpus [7] of simulta-

neously recorded speech and articulatory measurements from 47

American English speakers (22 male, 25 female). Each speaker’s

recordings comprise ∼20 minutes of read speech including multi-

sentence recordings, individual sentences, isolated word sequences,

and number sequences, as well as non-speech oral motor tasks. We

exclude isolated words and motor tasks, leaving up to 53 utterances

per speaker. The articulatory measurements are horizontal and

vertical displacements of 8 pellets on the tongue, lips, and jaw.

Our baseline acoustic features are 13-dimensional mel-frequency

cepstral coefficients (MFCCs) computed every 10ms over a 25ms

window, along with their first and second derivatives, resulting in 39-

dimensional frames. We downsample the articulatory data from an

original rate of ∼ 145.7Hz to 100Hz to match the frame rate of our

acoustic features, with missing entries (mistracked pellets) recon-

structed by a smoothed low-rank matrix completion approach [24]

to obtain more training frames (which indeed improves the results).

Similarly to previous related work [6], the inputs to multi-view

feature learning are acoustic and articulatory features concatenated

over a 7-frame window around each frame, giving 273D acoustic

inputs and 112D articulatory inputs for the CCA models.

We extend previous work with speaker-independent experi-

ments [6] to a larger number of speakers and speaker-independence

in both feature learning and recognizer training.1 We split the

XRMB speakers into disjoint sets of 35/8/2/2 speakers for CCA

training/recognizer training/tuning/testing. The 35 speakers for

CCA training are fixed; the remaining 12 are used in a 6-fold experi-

ment (recognizer training on 4 2-speaker folds, tuning on 1 fold, and

testing on the last fold). Each split/fold is gender-balanced. Each

speaker has roughly 50, 000 frames, giving 1.43M multi-view train-

ing frames excluding silence. We remove the per-speaker mean and

variance of the articulatory measurements for each training speaker.

1We thank Louis Goldstein for providing alignments for all 47 speakers.

We compare the following acoustic feature transformations:

Standard discriminative DNN features (DNN). We train a 3-layer

neural network to predict the monophone label from the 273D acous-

tic input on the recognizer training set (for each fold separately),

which contains 8 speakers with ground truth alignment. We use the

last layer hidden activations with dimensionality reduced to L by

principal components analysis (PCA) as tandem features. This base-

line shows what can be done without using the unlabeled external

multi-view data.

DNN-based articulatory inversion (AI). We train a 3-layer neural

network to map from the 273D acoustic input to the 112D articula-

tory measurements in each frame, and then reduce the dimensional-

ity to L via PCA. We also considered deeper architectures, as well

as articulatory inversion to the 16-dimensional single-frame features,

but these did not improve on the reported AI model and are not de-

tailed further here.

Linear CCA (CCA). Standard CCA, (f̃ , g̃) a linear transformation.

Kernel CCA (KCCA). Exact KCCA is intractable for our data due

to its memory needs. We instead use the random Fourier feature

approach of Lopez-Paz et al. [17]: For each view, we randomly sam-

ple M Dx/Dy-dimensional vectors from a Gaussian distribution and

map the input to R
M by computing the dot-product with the random

samples followed by an elementwise cosine. We then apply linear

CCA on the transformed features, as linear operations on these fea-

tures approximate those in the RKHS corresponding to the Gaussian

kernel. We solve this linear CCA step exactly via SVD. The total

computational complexity for training is O(M3 + M2N), and for

testing it is linear in the number of model parameters (random Gauss-

ian samples+CCA projection matrix) and of order O(MDx +ML)
per test sample. We tune the kernel width in each view by grid search

using M = 5, 000 random samples, and then test the selected model

using M = 30, 000 random samples (the largest M for which we

could store and compute an exact SVD of an M × M matrix on a

workstation with 64G main memory).

Deep CCA (DCCA). We investigate different neural network archi-

tectures for each view. For f (and similarly for g), we use a Kf -layer

network where the first Kf − 1 layers are of the same width and the

last layer is of width L, the desired final dimensionality. We denote

such a DCCA architecture DCCA-[Kf ,Kg]. We use rectified linear

units (ReLU) rather than the inverse cubic activation of [18], as these

are faster and performed similarly in preliminary experiments.

All of the learned feature types are used in a tandem approach

[3], i.e., they are appended to the original 39D MFCC features and

used in a HMM/GMM recognizer. The recognizer is a basic 3-state

left-to-right monophone HMM-based model with a TIMIT bigram

language model (as pointed out previously [6], an XRMB bigram

model is too biased). We tune the language model weight/penalty

on one fold and fix them on others, and tune the number of diagonal

Gaussian components (up to 32) for each fold separately.

We use hidden layers of 1, 500 ReLUs for the DNN, AI, and

DCCA features; using a narrower hidden layer in the middle (“bot-

tleneck”) gives worse recognition performance. The networks are all

trained via SGD with the minibatch size, learning rate and momen-

tum parameter tuned by grid search. For the DNN features we use

dropout [25], with the dropout probability chosen from {0, 0.2, 0.5}.

For all CCA-based features, we also tune for regularization param-

eters (rx, ry). The dimensionality L is tuned over {30, 50, 70}. In

each fold, we select the best hyperparameters based on recognition

accuracy on the tuning speakers, and use the corresponding learned
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Fig. 2. Phone error rate using different

feature transformations. Each marker de-

notes a feature type and each color de-

notes a fold. Horizontal bars give the av-

erage PER for each feature type.

The phone error

rates (PER) obtained

by each feature trans-

formation on all folds

are given in Figure 2.

All of the CCA-based

feature transforma-

tions, as well as ar-

ticulatory inversion,

produce large im-

provements over the

baseline MFCCs, con-

firming that the artic-

ulatory measurements

contain valuable infor-

mation for learning

better acoustic fea-

tures. For DCCA,

we give the final result for the architecture that performed best on

tuning data, but several architectures perform similarly. Asymmet-

ric architectures where the acoustic view uses a highly nonlinear

(deep) network and the articulatory view uses a linear mapping

(DCCA-[Kf ,1]) tend to achieve better performance than using non-

linear networks for both views, and the performance improves as the

acoustic view network gets deeper (i.e., larger Kf ). Such asymmet-

ric networks are “close” to articulatory inversion, but are still quite

different in that the articulatory view is transformed and the features

are optimized for correlation and not squared error.

There is a wide range of hyper-parameters that lead to similarly

competitive results for DCCA. For KCCA, we find it important to

use a large number of random features M to get a competitive result,

consistent with [23]. With M = 5, 000, KCCA is slightly worse

than linear CCA. With M = 30, 000, KCCA has about 14.6 million

parameters (random Gaussian samples + projection matrices), which

is 1.6 times the number of parameters in a DCCA-[5,1] architecture

(and is slower for testing as the cost is linear in the number of weight

parameters for both algorithms), yet it is outperformed by deep CCA

by a large margin. It is conceivable that randomized KCCA could

improve over DCCA with even more parameters, but DCCA is easier

and faster to train.

Our AI network gets a root mean squared error (RMSE) of

1.96mm per dimension (averaged over dimensions) for reconstruct-

ing tuning speakers’ articulatory measurements, and an RMSE of

1.17mm for the 35 training speakers. It is possible to reduce training

RMSE with further training or larger networks, but over-fitting hap-

pens early during training (we have trained a 6 hidden layer network

which failed to improve the RMSE of test speakers or recognition

accuracy). We believe this relatively weak generalization perfor-

mance of AI is due to the remaining speaker variation in articulatory

measurements that is not accounted for by our per-speaker mean and

variance normalization. The supervised DNN features are learned

on a smaller set of (labeled) frames than are the CCA-based and AI

features (8 speakers vs. 35 speakers).

The differences in PER between DCCA and other feature types

are significant at levels of < 0.05 according to paired-sample t-tests.

In informal experiments varying the number of speakers in the unla-

beled multi-view training data, we observe that linear CCA retains

its performance with many fewer speakers, while DCCA requires

more speakers; again this may be due to unaccounted for speaker

variation, and deserves further analysis in future work.

5.1. Analysis of DCCA optimization
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Fig. 3. Learning curves (total corre-

lation vs. training time) of DCCA on

the ’JW11’ set of [18]. The maxi-

mum correlation is the dimensionality

(112). Each marker corresponds to one

epoch (one pass over the training data)

for SGD, or one iteration for L-BFGS.

“SGD n” = SGD with minibatch size n.

We now consider the

effect of our SGD op-

timization and demon-

strate the importance of

minibatch size. We use

the two-view data and

train/tune/test splits of

speaker JW11 used in

[18] in order to com-

pare directly with their

results. The acous-

tic/articulatory network

has two hidden layers

of 1800/1200 ReLUs re-

spectively, and the out-

put dimensionality (and

therefore the maximum

possible total correla-

tion over dimensions) is

L = 112. We use a

small weight decay λ =
10−4 and do not pre-train. We do grid search for several hyper-

parameters: rx, ry ∈ {10−6, 10−4, 10−2, 1, 102}, con-

stant learning rate in {10−4, 10−3, 10−2, 10−1}, fixed mo-

mentum in {0, 0.5, 0.9, 0.95, 0.99}, and minibatch size in

{100, 200, 300, 400, 500, 750, 1000}. Figure 3 shows the learn-

ing curves on the tuning set for different minibatch sizes, each using

the optimal values for the other hyper-parameters. It is clear that for

small minibatch sizes (100, 200), the correlation quickly plateaus

at a low value, whereas for large enough minibatch size, there is al-

ways a steep increase at the beginning which is a known advantage

of stochastic first-order algorithms [26], and a wide range of learning

rate/momentum give very similar results.

For comparison, we also train the same model using L-BFGS

(using the implementation of Mark Schmidt, which includes a good

line-search procedure [27]) in full-batch mode (although it could

also be used with minibatches) with the same random initial weight

parameters and tune (rx, ry) on the same grid. While L-BFGS does

well on the training set, its performance on tuning/test is usually

worse than that of SGD with reasonable hyper-parameters. In fact,

with this shallow architecture, L-BFGS achieves a total tuning corre-

lation of 73.7, while stochastic training achieves a tuning correlation

of 80.5, higher than the best correlation obtained by [18].

6. CONCLUSION

We have shown that deep CCA can be optimized well by SGD, and

thus that we can use it on large-scale data sets; and that using un-

labeled multi-view acoustic-articulatory data external to the recog-

nizer’s labeled training set, we can improve phonetic recognition and

do so better with DCCA than with previous CCA-based approaches

or with DNN-based articulatory inversion. The improvement over

articulatory inversion suggests that predicting the details of articu-

lation is neither important nor useful, perhaps because inversion re-

quires learning details that are more speaker-specific than the hidden

subspace learned by CCA-based techniques. Compared to current

implementations of kernel CCA, DCCA scales better to large data.

Future directions include incorporating multi-view feature learning

in a hybrid model; incorporating supervision in the case where we

have labels for the multi-view data (i.e., extending [28] to jointly

training a deep and highly correlated representation); and further

analysis of stochastic training and network types for DCCA.
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