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ABSTRACT

Long Short Term Memory Recurrent Neural Networks (LSTM
RNNs), combined with hidden Markov models (HMMs), have re-
cently been show to outperform other acoustic models such as Gaus-
sian mixture models (GMMs) and deep neural networks (DNNs)
for large scale speech recognition. We argue that using multi-state
HMMs with LSTM RNN acoustic models is an unnecessary ves-
tige of GMM-HMM and DNN-HMM modelling since LSTM RNNs
are able to predict output distributions through continuous, instead
of piece-wise stationary, modelling of the acoustic trajectory. We
demonstrate equivalent results for context independent whole-phone
or 3-state models and show that minimum-duration modelling can
lead to improved results. We go on to show that context depen-
dent whole-phone models can perform as well as context dependent
states, given a minimum duration model.

Index Terms— Hybrid neural networks, hidden Markov mod-
els, Long Short-Term Memory Recurrent Neural Networks, context
dependent phone models.

1. INTRODUCTION

Deep neural networks (DNNs) have been successful for acoustic
modeling in large vocabulary speech recognition [1]. More re-
cently, Long Short-Term Memory (LSTM) recurrent neural net-
works (RNNs) have been shown to beat state-of-the-art DNN sys-
tems [2, 3, 4]. LSTMs [5, 6] are a type of recurrent neural net-
work, which contain special units called memory blocks in the re-
current hidden layer, and which are often easier to train than stan-
dard RNNs. The memory blocks contain memory cells with self-
connections storing the temporal state of the network. In addition,
they have multiplicative units called gates to control the flow of in-
formation into the memory cell and from the cell to the rest of the
network.

Both DNNs and LSTMs are commonly used as probability esti-
mators and in speech recognition, the probabilities are used to com-
pute the likelihood of some acoustic data, given word sequences, in
a hidden Markov model. This is a so-called “hybrid” use of neural
networks. By searching through a weighted search graph of word se-
quences, implemented as a finite state automaton, the maximum like-
lihood word sequence can be found. Typically the probabilities are
estimated for a set of acoustic units which correspond to the states of
the HMM. These acoustic units are produced by a clustering based
on the context — the phonemes preceding and following the units.

In this paper we reexamine how these acoustic units are cho-
sen, and show that we can achieve comparable results with a sim-
pler HMM model, provided that we introduce a simple duration
model. Section 2 describes the Hybrid HMM-LSTM models we use

and describes context dependency (Section 2.2) and duration mod-
elling (Section 2.3). Section 3.2 describes our system architecture
and data, while Section 4 describes initial experiments with context-
independent (CI) models and futher experiments with duration mod-
elling and CD phone models. The final section summarizes the ex-
periments and describes future work.

2. HYBRID LSTM-HMM ACOUSTIC MODELS

DNNs and LSTM RNNs for acoustic modeling have commonly
used the hybrid approach [7], where the neural networks estimate
the posterior probabilities p(si|x1, . . . , xi) of acoustic states si
given part of a sequence of T feature vectors X = x1, . . . , xT .
A hidden Markov model decoder finds the most likely sequence
of states through a search graph by combining the scaled posteri-
ors p(si|x1, . . . , xi)/p(si) for individual frames with the language
model probability p(s1, . . . , sN ).

These hybrid neural network models use a softmax output layer
which converges to estimate class posteriors when trained with a
cross-entropy loss. They are generally trained with targets from an
alignment. Alignments can be obtained by forced alignment of the
supervised transcript with the acoustic sequence using any existing
model, including one that has been“flat-started’ [8] without align-
ment information.

2.1. HMM States

The simplest form of acoustic model uses a single HMM state per
phone, as show in Figure 1(c). Because of the temporal variation
within a phone, it is common to split a phone into more than one
state, usually three, as shown in Figure 1(b), whose probabilities are
modelled separately by the acoustic model.

Transitions in the hidden Markov model are restricted to allow
only left-to-right transitions in the model, effectively dividing the
phonetic unit into a set of states which must be traversed in sequence,
with optional repetitions, each state having a stationary probability
distribution. While there has been previous work in which the HMM
topology or number of states is varied, the majority of recent work,
particularly that using deep neural networks, uses the 3-state left-
to-right models shown in Figure 1(a). The three-state, piecewise-
stationary model is a parsimonious and effective simplification that
was hard to beat with more complex models of the non-stationarity
of the acoustic frames from a phone. We have previously used the
same HMM topology with LSTM acoustic models [4]. Throughout
this work we use HMM states with self-loops and transitions to the
next state.

The independent processing of acoustic frames in GMMs and
DNNs means that the distribution for each acoustic state is the same
for all frames in that state — the posterior is conditioned only on
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Fig. 1: Simple left-to-right HMM topologies. (a) A conventional 3-
state CD HMM. (b) A 3-state CI HMM (c) A one-state phone HMM
(d) A tied-state CI phone model with minimum duration of 3. (e) A
tied-state CD phone model with minimum duration of 4.

the current feature vector. However, in a recurrent network the dis-
tribution for each frame of a state is different, being dependent on
the internal state of the RNN, so we would argue that there is no
need for the modelling of three distinct output distributions for each
phoneme. Temporal variation of the distribution can already be cap-
tured by the RNN dynamics, so a single output label per phone
should be sufficient.

2.2. Context dependent state tying

It has long been known that, because of coarticulation effects, the
acoustic realisations of phonetic units depend on their context and in
particular the phonemes that precede and follow them. To achieve
greater modelling power, context-dependent units were proposed, in
which states in different contexts are modelled separately [9]. Be-
cause of the large number of possible contexts (N2 contexts for tri-
phone units with N phones, leading to 3 × N3 possible units for
3-state HMMs), context dependent modelling is only feasible by
clustering similar contexts and treating them identically, resulting
in context dependent state tying.

Young et al. [9] described one way to cluster similar context-
dependent states. This algorithm takes force-aligned feature vectors,
collecting together all those vectors aligned to a particular CI state,
and computing sufficient statistics on each subset with a particular
phonetic context. Now, for each CI state a decision tree is built by
binary divisive clustering. At each node of the tree a set of binary
phonetic questions is posed about the state’s neighboring phones.
Each such question partitions the data in two, and from the sufficient
statistics a Gaussian model can be estimated for each partition. The
tree is extended by choosing the question which leads to the greatest
likelihood gain. Tree building terminates when the likelihood gains
are below a threshold, or when the leaves have too few observations.

By terminating the tree-building earlier, we can derive smaller
inventories of context dependent states. Throughout our experi-
ments, for CD state clustering and model training, we use the same
training set and state boundaries given by a CD-DNN model. Since
the state inventories from truncated tree-building are nested, a sim-
ple many-to-one mapping can be applied to the original alignment

labels to train with these smaller inventories.
In this work, we modify the algorithm in three ways. First, in-

stead of clustering with one tree per CI state, we build one tree per
phone. Second, since we wish our acoustic states to model whole-
phone trajectories of acoustic features rather than piecewise station-
ary periods of acoustic features, instead of clustering all the frames
assigned to each phone we make a single representative feature vec-
tor for each example of the phone in the training set. A simple fea-
ture vector is constructed by concatenating the central frame from
each state of the 3-state frame alignment (the alignment in this case
comes from a previously-trained 3-state CI DNN system.) Third,
following our previous work [8], we investigate changing the speech
representation used for clustering. Previously we compared conven-
tional (PLP) acoustic features with temporal differences; filterbanks
with and without temporal differences; and the activations of a DNN
ASR model’s penultimate layer.

In this work we begin by clustering with DNN activation fea-
tures which results in 8367 CD phone models. The baseline model
obtained by clustering CI states using PLP features has 13522 CD
states. The static CLG FSTs that result from the different C trans-
ducers are approximately the same size.

2.2.1. Clustering on LSTM state

Since we argue that the LSTM is modelling the acoustic trajectory
throughout each phone, then it also seems natural that the LSTM
state should be a good representation of that trajectory. Thus we re-
peat the same clustering algorithm using vectors of LSTM state from
a previously trained two-layer LSTM model. Each phoneme in the
training set is represented by the second LSTM layer’s state for the
final frame of that phoneme, which is 800 dimensional. Clustering
in this case results in 8491 CD phones.

2.2.2. Clustering right context

We note that using the connectionist temporal classification (CTC)
algorithm [10] with bidirectional LSTMs has shown good results
on whole-phone models [11, 12] without the need for context-
dependent modelling. We argue that bidirectionality provides the
model with evidence for the acoustic context and thus the LSTM
model itself is modelling the distribution given the context, in the
same way that choosing a context-dependent unit on the basis of the
search graph conditions the distribution on the context. Since we
have a unidirectional model which is aware of the left, but not right,
acoustic context, we investigated the effect of phone clustering based
only on the right phonetic context. For these experiments, we again
used the LSTM state features, and clustering resulted in 1120 CD
phone units. Note that the maximum number of right-context depen-
dent CD phone units when silence is not made context dependent is
1641 for 41 phones.

2.3. Duration modelling

Several previous researchers have investigated the use of duration
models for speech recognition [13]. Typically these are used to
assign transition probabilities to the HMM to match the empirical
distribution of durations observed in the training set. Our base-
line model had no duration model — using probabilities of 1

2
for

both arcs leaving each state. Nevertheless the three-state left-to-right
topology imposes a minimum duration of 3 frames per phone since
it requires that at least one frame is emitted by each state.

With a single state per phone, the minimum phone duration be-
comes a single frame, which allows poorly-matching phones to be
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passed through with minimal cost. To prevent this, we apply a simple
minimum duration. In our system this is simple to do by making a
multi-state HMM but tying the distributions of these states, as shown
in Figure 1(d). For direct comparison we initially use 3-state HMMs
but observe that it is simple to make the minimum duration phone-
dependent by varying the number of state replicas. With context
dependent phone-modelling we can make the duration dependent on
the particular CD phone, as shown in Figure 1(e).

Duration histograms can be computed from the training set. Fig-
ure 2(top) shows the cumulative histograms for the phone mod-
els. Every phone instance has a duration of 3 or more states be-
cause the alignment was done with a 3-state CD HMM, but it can
be seen that the observed distribution is quite different for different
phones. Thresholding the cumulative probability (we found a thresh-
old of 10% of the probability mass to give the best results in initial
tests), we arrive at a minimum duration for each phone or CD-phone
(shown in Figure 1(e)), though for the special case of silence we con-
tinue to use a 3-state minimum duration. Figure 2(top) shows that
there is considerable variation in the observed durations of different
context dependent variants of a single phone.
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Fig. 2: Cumulative duration histograms for selected models mea-
sured on the training set alignments. The dashed line shows the
10% threshold used here to determine a minimum duration thresh-
old. Top: whole-phone durations. Bottom: The 21 different CD
variants of the “OI” phone from the 8491-CD inventory show con-
siderable diversity.

3. EXPERIMENTAL SET-UP

3.1. LSTM RNN

The LSTM network used in this paper is adopted from our previ-
ous work [4] and uses the conventional hyperbolic tangent activa-
tion (tanh) for the cell input units and cell output units, and logistic
sigmoid for the input, output and forget gate units. A final output
layer has a softmax activation function. We use a two layer deep
LSTM RNN, where each LSTM layer has 800 memory cells and a
dimensionality-reducing linear recurrent projection layer of 512 lin-
ear units. The network has a total of 13 million parameters. We
use a unidirectional model because of the low-latency requirement
of our interactive task. With a unidirectional model we can stream
computation and decoding results while a query is being uttered.

The input to the LSTM at each time step is a single frame of
40-dimensional log-mel filterbank features. Since information from
future frames helps making better decisions for the current frame
(similar to having a right context window in DNNs), we delay the
output HMM state label by 5 frames.

The LSTM networks are trained with a cross-entropy loss, us-
ing asynchronous stochastic gradient descent (ASGD) [4] using dis-
tributed training with 300 tasks scheduled on different machines,
each working through a partition of the randomly shuffled training
utterances. Each task processes four utterances at a time, using the
back propagation through time algorithm to forward propagate and
then backpropagate for 20 consecutive frames. Each task thus com-
putes a parameter gradient update for a minibatch of 4× 20 frames.
More details of LSTMs and training with ASGD can be found in an
earlier work [4].

3.2. Training & Evaluation

All the networks are trained on a 3 million utterance (about 1700
hours) dataset consisting of anonymized and hand-transcribed 8kHz
US English Google voice search and dictation traffic. The dataset is
represented with 25ms frames of 40-dimensional log-filterbank en-
ergy features computed every 10ms. The 40-dimensional features
are input to the network with no stacking of frames. The utterances
are force-aligned with an 85 million parameter DNN to generate
fixed labels for training. The weights of all layers are randomly ini-
tialized prior to training. We try to set the learning rate specific to
a network architecture and its configuration to the largest value that
results in a stable convergence. The learning rates are initially held
constant and then decayed exponentially during training. A small
amount of `2 regularization was used throughout training.

The trained models are evaluated in a large vocabulary speech
recognition system on a test set of 22,500 hand-transcribed utter-
ances and the word error rates (WERs) are reported. The language
model used in the first pass of decoding is a 5-gram language model
heavily pruned to 23 million n-grams with a 2.2 million word vo-
cabulary. In a second pass, the word lattices output from the first
pass are rescored with a 5-gram language model having 15 billion
n-grams.

4. EXPERIMENTS

Our first experiment investigates the need for dividing each phone
into 3 states modelled separately by the LSTM using context inde-
pendent models.

We trained two LSTM acoustic models using the same align-
ments given by forced-alignments with a 14,000 CD state DNN. The
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first LSTM has 126 softmax outputs corresponding to the context in-
dependent states of an HMM with 3 states per phone (mapping the
CD labels of the alignment to the corresponding CI state). The sec-
ond LSTM has 42 output states, one per phone, after mapping the
alignments to the corresponding phone. These models are used for
decoding with a simple HMM that has one state per phone (Fig-
ure 1(b) and (c) respectively). Results are shown in Table 1. We first
observe that this phone model performs worse than the CI model.
However, in changing the granularity of the acoustic model we have
also changed the number of states per phone. This means that the
minimum number of frames that must be expended in each phone
has changed from 3 to 1, which by itself impacts recognition ac-
curacy. By representing each phone with a 3-state HMM with tied
distributions (Figure 1(d)), we can use the phone acoustic model but
retain the minimum duration constraint, and achieve a similar WER,
as shown on the last line of Table 1. The remaining experiments in-

Table 1: Word Error Rates of context-independent models. A
14000 state context dependent model trained with the same align-
ments achieves 10.7% WER.

Model WER (%)
126-state CI model 16.5

42-state phone model 20.0
42-state phone model with minimum duration 3 16.4

vestigate the use of context dependency and were trained with a dif-
ferent phone set and different alignments to the context-independent
experiments.

4.1. Duration modelling

Table 2 shows the effect of different duration models when testing
the 8397-state CD phone LSTM acoustic model. It can again be seen
that imposing a minimum duration is essential for good performance,
with the best performance for a fixed minimum duration when every
model has duration 4. Setting a minimum duration per phone gives
better results, but the best performance is found when the minimum
duration is chosen separately for each CD-phone model.

4.2. Context dependent clustering

We note that the performance of the context independent model is
significantly worse than the performance of a context dependent
model (16.5% WER vs 10.7%), so we next investigate whether we
can make context-dependent whole-phone models in the same way
as we use context dependent HMM states in our baseline model.

Table 3 compares the three different features from Section 2.2
for clustering CD-phones (based on DNN-activation, LSTM state
or LSTM-state with right-context only) with the standard CD-state
inventory. In each case we compare different sizes of state inventory
by early-termination of the clustering.

We first observe that the whole-phone CD models with
8367/8491 states perform as well as the conventional CD state model
with 13522 states (and better than the CD state model with 8000
states). For smaller state inventories the performance is roughly
comparable. We observe that the two feature types we have used for
CD phone tree building result in similar performance. It appears not
to be sufficient to only cluster on the right context, although the state
inventory is small (1120) it represents 70% of the possible right-
clustered diphone units possible.

Table 2: Word error rates for CD phone models with different
minimum-duration models, using the 8397-CD-phone LSTM acous-
tic model.

Duration WER
1 state 12.3
3 state 10.4
4 state 10.2
5 state 10.3

Per-phone 10.1
Per-CD phone 10.0

Table 3: Clustering on LSTM state vs DNN features. In each
CD phone evaluation we use the per-CD-phone minimum duration
model.

States CD phones CD statesDNN Activations LSTM State Right only
500 12.0 12.4 12.1 12.1

1120 – – 11.7 –
2000 11.6 11.3 – 11.0

~8300 10.0 10.0 – 10.5
13522 – – – 10.1

5. CONCLUSIONS AND FURTHER WORK

In this paper we have shown that the conventional multi-state phone
model used with GMMs and DNNs is not necessary with LSTM
acoustic models. We have shown that, with a simple duration model,
a context-dependent triphone model can equal the performance of
a 3-state context-dependent triphone model. This reduces the num-
ber of states that must be modelled and consequently the number of
parameters and acoustic model computational burden.

Since we have shown the importance of even a simple minimum
duration model, we plan to investigate stronger modelling of the CD-
phone duration distributions. The models described here were all
trained on the same DNN-based alignment. One or more iterations
of realignment and retraining of both the LSTM and the duration
model may result in a more consistent and thus more accurate model.

Further, we have recently [14] shown improvements in WER
(around 10% relative) from sequence training [15] of LSTM acous-
tic models. We have still to investigate whether such gains can also
be demonstrated for these CD phone models. Finally, we plan to
investigate whether these context dependent models can be used in
conjunction with the CTC algorithm [10] that has hitherto only been
used with context independent whole-phone models, but which can
nevertheless achieve word error rates close to those from conven-
tional CD state models [12].
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