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ABSTRACT

Both Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) have shown improvements over Deep Neural Net-
works (DNNs) across a wide variety of speech recognition tasks.
CNNs, LSTMs and DNNs are complementary in their modeling
capabilities, as CNNs are good at reducing frequency variations,
LSTMs are good at temporal modeling, and DNNs are appropriate
for mapping features to a more separable space. In this paper, we
take advantage of the complementarity of CNNs, LSTMs and DNNs
by combining them into one unified architecture. We explore the
proposed architecture, which we call CLDNN, on a variety of large
vocabulary tasks, varying from 200 to 2,000 hours. We find that
the CLDNN provides a 4-6% relative improvement in WER over an
LSTM, the strongest of the three individual models.

1. INTRODUCTION

In the past few years, Deep Neural Networks (DNNs) have achieved
tremendous success for large vocabulary continuous speech recog-
nition (LVCSR) tasks compared to Gaussian Mixture Model/Hidden
Markov Model (GMM/HMM) systems [1]. Recently, further im-
provements over DNNs have been obtained with alternative types of
neural network architectures, including Convolutional Neural Net-
works (CNN5s) [2] and Long-Short Term Memory Recurrent Neural
Networks (LSTMs) [3]. CNNs, LSTMs and DNNs are individually
limited in their modeling capabilities, and we believe that speech
recognition performance can be improved by combining these net-
works in a unified framework.

A good overview of the modeling limitations of RNNs (and thus
LSTMs) is provided in [4]. One issue with LSTMs is that the tem-
poral modeling is done on the input feature x; (i.e., log-mel fea-
ture). However, higher-level modeling of x; can help to disentangle
underlying factors of variation within the input, which should then
make it easier to learn temporal structure between successive time
steps [4]. For example, it has been shown that CNNs learn speaker-
adapted/discriminatively trained features, and thus remove variation
in the input [5]. Thus, it could be beneficial to proceed LSTMs with
a few fully connected CNN layers.

In fact, state-of-the art GMM/HMM systems perform speaker
adaptation, using techniques such as vocal tract length normaliza-
tion (VTLN) and feature-space maximum likelihood linear regres-
sion (fMLLR), before performing temporal modeling via HMMs [6].
This recipe order has been shown to be appropriate for LVCSR tasks
[7]. Therefore, it makes sense to explore passing the input x; to
CNN layers, which reduce variance in frequency of the input, before
passing this to LSTM layers to model the sequence temporally.

In addition, as mentioned in [4], in LSTMs the mapping between
h: and output y is also not deep, meaning there is no intermediate
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nonlinear hidden layer. If factors of variation in the hidden states
could be reduced, then the hidden state of the model could summa-
rize the history of previous inputs more efficiently. In turn, this could
make the output easier to predict. Reducing variation in the hidden
states can be modeled by having DNN layers after the LSTM layers.
This is similar in spirit to the hidden to output model proposed in
[4], and also tested for speech, though with RNNs [8].

The model we propose is to feed input features, surrounded by
temporal context, into a few CNN layers to reduce spectral variation.
The output of the CNN layer is then fed into a few LSTM layers to
reduce temporal variations. Then, the output of the last LSTM layer
is fed to a few fully connected DNN layers, which transform the
features into a space that makes that output easier to classify.

Combining CNN, LSTMs and DNNs has been explored in [9].
However, in that paper the three models were first trained separately
and then the three outputs were combined through a combination
layer. Our paper is different in that we combine CNNs, LSTMs and
CNNs into one unified framework that is trained jointly. Further-
more, our choice of how to combine these layers is motivated by
analysis in [4], which indicates that LSTM performance can be im-
proved by providing better features to the LSTM (which the CNN
layers provide through reducing spectral variance), as well as im-
proving output predictions by making the mapping between hidden
units and outputs deeper (which the DNN layers provide).

Each CNN, LSTM and DNN block captures information about
the input representation at different scales [10]. Therefore, we ex-
plore if further improvements can be obtained by combining infor-
mation at multiple scales. Specifically, we explore passing a long-
term feature into the CNN, which is then passed into the LSTM
along with a short-term feature. In addition, we explore the comple-
mentarity between the modeling capabilities of LSTM and DNN lay-
ers. Specifically, we investigate passing the output of the CNN layer
into both LSTM and DNN layers. We will refer to the CLDNN archi-
tecture with these additional connections as a multi-scale CLDNN.

Our initial experiments to understand the behavior of the
CLDNN are conducted on a 200 hour Voice Search task. We find
that the CLDNN architecture provides an 4% relative improvement
in WER over the LSTM, and including multi-scale features gives an
additional 1% relative improvement. Next, we explore the behavior
of the CLDNN architecture on 2 larger Voice Search tasks, namely
a 2,000 hour clean-speech corpus, and 2,000 hour noisy-speech cor-
pus. Here we find that the CLDNN provides between a 4-5% relative
improvement in WER over the LSTM, and the multi-scale additions
provide an additional 1% relative improvement. This demonstrates
the robustness of the proposed CLDNN architecture with larger data
sets and different environmental conditions.

The rest of this paper is as follows. In Section 2 we describe
the CLDNN architecture, as well as the multi-scale additions. Ex-
perimental setup is described in Section 3 and initial experiments to
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understand the CLDNN architecture are presented in Section 4. Re-
sults on the larger data sets are then discussed in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2. MODEL ARCHITECTURE

This section describes the CLDNN architecture shown in Figure 1.

2.1. CLDNN

In Figure 1, frame x¢, surrounded by [ contextual vectors to the left
and r contextual vectors to the right, is passed as input to the net-
work. This input is denoted as [z¢—, . .., Z¢yr]. In our work, each
frame x+ is a 40-dimensional log-mel filterbank feature.

First, we reduce frequency variance in the input signal by pass-
ing the input through a few convolutional layers. The architecture
used for each CNN layer is similar to that proposed in [2]. Specif-
ically, we use 2 convolutional layers, each with 256 feature maps.
We use a 9x9 frequency-time filter for the first convolutional layer,
followed by a 4x3 filter for the second convolutional layer, and these
filters are shared across the entire time-frequency space. Our pool-
ing strategy is to use non-overlapping max pooling, and pooling in
frequency only is performed [11]. A pooling size of 3 was used for
the first layer, and no pooling was done in the second layer.

The dimension of the last layer of the CNN is large, due to the
number of feature-maps x time x frequency context. Thus, we add a
linear layer to reduce feature dimension, before passing this to the
LSTM layer, as indicated in Figure 1. In [12] we found that adding
this linear layer after the CNN layers allows for a reduction in pa-
rameters with no loss in accuracy. In our experiments, we found that
reducing the dimensionality, such that we have 256 outputs from the
linear layer, was appropriate.

After frequency modeling is performed, we next pass the CNN
output to LSTM layers, which are appropriate for modeling the sig-
nal in time. Following the strategy proposed in [3], we use 2 LSTM
layers, where each LSTM layer has 832 cells, and a 512 unit projec-
tion layer for dimensionality reduction. Unless otherwise indicated,
the LSTM is unrolled for 20 time steps for training with truncated
backpropagation through time (BPTT). In addition, the output state
label is delayed by 5 frames, as we have observed with DNNs that
information about future frames helps to better predict the current
frame. The input feature into the CNN has [ contextual frames to
the left and r to the right, and the CNN output is then passed to the
LSTM. In order to ensure that the LSTM does not see more than 5
frames of future context, which would increase the decoding latency,
we set 7 = 0 for CLDNNS .

Finally, after performing frequency and temporal modeling, we
pass the output of the LSTM to a few fully connected DNN layers.
As shown in [5], these higher layers are appropriate for producing a
higher-order feature representation that is more easily separable into
the different classes we want to discriminate. Each fully connected
layer has 1,024 hidden units.

2.2. Multi-scale Additions

The CNN takes a long-term feature, seeing a context of t —{ to ¢ (i.e.,
r = 0 in the CLDNN), and produces a higher order representation
of this to pass into the LSTM. The LSTM is then unrolled for 20
timesteps, and thus consumes a larger context of 20 + [. However,
we feel there is complementary information in also passing the short-
term x; feature to the LSTM. In fact, the original LSTM work in
[3] looked at modeling a sequence of 20 consecutive short-term x+
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Fig. 1. CLDNN Architecture

features, with no context. In order to model short and long-term
features, we take the original x; and pass this as input, along with
the long-term feature from the CNN, into the LSTM. This is shown
by dashed stream (1) in Figure 1.

The use of short and long-term features in a neural network has
been explored previously (i.e., [13, 14]). The main difference be-
tween previous work and ours is that we are able to do this jointly
in one network, namely because of the power of the LSTM sequen-
tial modeling. In addition, our combination of short and long-term
features results in a negligible increase in the number of network
parameters.

In addition, we explore if there is complementarity between
modeling the output of the CNN temporally with an LSTM, as well
as discriminatively with a DNN. Specifically, motivated by work in
computer vision [10], we explore passing the output of the CNN into
both the LSTM and DNN. This is indicated by the dashed stream
(2) in Figure 1. This idea of combining information from CNN and
DNN layers has been explored before in speech [11, 15], though
previous work added extra DNN layers to do the combination. Our
work differs in that we pass the output of the CNN directly into the
DNN, without extra layers and thus minimal parameter increase.



3. EXPERIMENTS

Our initial experiments to understand the CNN, DNN and LSTM ar-
chitectures are conducted on a medium-sized training set consisting
of 300k English-spoken utterances (about 200 hours). Further ex-
periments are then performed on larger training set of 3m utterances
(2,000 hrs). In addition, to explore the robustness of our model to
noise, we also perform experiments using a noisy training set of 3m
utterances (2,000 hrs). This data set is created by artificially corrupt-
ing clean utterances using a room simulator, adding varying degrees
of noise and reverberation, such that the overall SNR is between
5dB to 30dB. The noise sources are from YouTube and daily life
noisy environmental recordings. All training sets are anonymized
and hand-transcribed, and are representative of Google’s speech traf-
fic. Models trained on clean speech are evaluated on a clean test set
containing 30,000 utterances (20 hrs). In addition, models trained on
noisy speech are evaluated in matched conditions on a 30,000 utter-
ance noisy test set, to which noise at various SNRs has been added
to the clean test set. It is important to note that the training and test
sets used in this paper are different than those in [3], and therefore
numbers cannot directly be compared.

The input feature for all models are 40-dimensional log-mel fil-
terbank features, computed every 10ms. Unless otherwise indicated,
all neural networks are trained with the cross-entropy criterion, using
the asynchronous stochastic gradient descent (ASGD) optimization
strategy described in [16]. The sequence-training experiments in this
paper also use distributed ASGD, which is outlined in more detail in
[17]. All networks have 13,522 CD output targets. The weights
for all CNN and DNN layers are initialized using the Glorot-Bengio
strategy described in [18]. Unless otherwise indicated, all LSTM
layers are randomly initialized to be Gaussian, with a variance of
1/(# inputs). In addition, the learning rate is chosen specific to
each network, and is chosen to be the largest value such that training
remains stable. Learning rates are exponentially decayed.

4. RESULTS

Initial results to understand the combination CLDNN model, and its
variants, are presented in this section. All models are trained on the
medium-sized 200 hour clean training set, and results are reported
on the clean test set.

4.1. Baselines

First, we establish baseline numbers for CNNs, DNNs and LSTMs,
as shown in Table 1. Consistent with results reported in the literature
[2], the CNN is trained with 2 convolutional layers with 256 feature
maps, and 4 fully connected layers of 1,024 hidden units. The DNN
is trained with 6 layers, 1,024 hidden units [1]. The input into both
the CNN and DNN is a 40-dimensional log-mel filterbank feature,
surrounded by a context of 20 past frames and 5 future frames. The
LSTM is trained with 2 layers of 832 cells, and a 512 dimensional
projection layer. Adding extra LSTM layers to this configuration
was not found to help [3]. The input into the LSTM is a single 40-
dimensional log-mel filterbank feature. The LSTM is unrolled 20
steps in time, and the output is delayed by 5 frames.

4.2. CNN+LSTM

In this section, we analyze the effect of adding CNN before the
LSTM. To show the benefit of CNNs over DNNs, we also report

Method | WER
DNN 18.4
CNN 18.0

LSTM 18.0

Table 1. DNN, CNN, LSTM Baselines

results for adding the DNN before the LSTM layer. Table 2 com-
pares the results for both CNNs and DNN, with different amounts of
left input context (i.e., [) to the CNN and DNN. Notice that for both
CNNs and DNNGs, the best results are obtained by having a left con-
text of 10 frames. A larger context of 20 hurts performance, likely
since the LSTM is then unrolled for 20 time steps, so the total con-
text processed by the LSTM is 40. Also notice that the benefits of
CNNs over DNNSs [2] continue to hold even when combined with
LSTMs.

Input Context | # Steps Unroll | WER CNN | WER DNN
1=0,r=0 20 17.8 18.2
1=10,r=0 20 17.6 18.2
1=20,r=0 20 17.9 18.5

Table 2. WER, CNN+LSTM vs. DNN+LSTM

To ensure that improvements with the CNN+LSTM are not due
to extra contextual features given to the CNN (and thus the LSTM),
we explore the behavior of LSTMs with different temporal contexts.
First, we provide the LSTM with an input spanning ten frames to the
left of the current frame (i.e., [ = 10), the same input feature pro-
vided to the CNN. The LSTM is still unrolled 20 timesteps. Table
3 shows that this does not improve WER over providing no feature
context to the LSTM. In addition, we compare passing a single frame
to the LSTM and unrolling it for 30 time steps, but this degrades
WER. This helps to justify the gains from the CNN+LSTM archi-
tecture, showing the importance of extracting more robust features
(with CNNs) before performing temporal modeling (with LSTMs).

Method WER
LSTM, [=0, unroll=20 18.0
LSTM, [=10, unroll=20 | 18.0
LSTM, (=0, unroll=30 18.2

Table 3. WER, Alternative Temporal Modeling for LSTM

4.3. LSTM+DNN

In this section, we explore the effect of adding fully connected layers
after the output of the LSTM. For this experiment, the input provided
to each network is single frame x, and the LSTM is again unrolled
for 20 time steps. Table 4 shows that improvements are obtained,
but performance seems to saturate after two additional layers. This
indicates that after temporal modeling is completed, it is beneficial
to use DNN layers to transform the output of the LSTM layer to a
space that is more discriminative and easier to predict output targets.

# DNN Layers WER
0 18.0 (LSTM)
1 17.8
2 17.6
3 17.6

Table 4. WER, LSTM+DNN
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4.4. CNN+LSTM+DNN

In this section, we put together the models from Sections 4.2 and
4.3, feeding features into a CNN, then performing temporal model-
ing with an LSTM, and finally feeding this output into 2 fully con-
nected layers. Table 5 shows the WER for the LSTM, CNN+LSTM,
LSTM+DNN and finally the combined CLDNN model. The table
indicates that the gains from combining the CNN and DNN layers
with the LSTM are complementary. Overall, we are able to achieve
a 4% relative improvement in WER over the LSTM model alone.

Method WER
LSTM 18.0
CNN+LSTM | 17.6
LSTM+DNN 17.6
CLDNN 17.3

Table 5. WER, CLDNN

4.5. Better Weight Initialization

We have shown that we can achieve gains by using the CNNs to
provide better features before performing temporal modeling with
LSTMs. One may argue that if the LSTMs are better initialized,
such that better temporal modeling can be performed, are CNNs re-
ally necessary? Our initial experiments with LSTMs use Gaussian
random weight initialization, which produces eigenvalues of the ini-
tial recurrent network which are close to zero, thus increasing the
chances for vanishing gradients [19]. To address this issue, we look
at uniform random weight initialization between —0.02 to 0.02 for
the LSTM layers.

Table 6 shows the gains with the CLDNN model still hold even
after better weight initialization, and the CLDNN model still has a
4% relative improvement over the LSTM. This justifies the benefit of
having CNN layers provide better features to do temporal modeling.
Notice now that with proper weight initialization, the LSTM is better
than the CNN or DNN in Table 1.

Method | WER - Gaussian Init | WER - Uniform Init
LSTM 18.0 17.7
CLDNN 17.3 17.0

Table 6. WER, Weight Initialization

4.6. Multi-scale Investigations

In this section, we investigate adding multi-scale information into the
CLDNN architecture, as described in Section 2.2. First, we explore
passing a long-term feature [rt_m, RN l’t] to the CNN, and a short-
term feature x; to the LSTM. Table 7 shows this gives a WER of
16.8%, an additional 1% relative improvement over passing just the
long-term feature from the CNN into the LSTM.

Second, we explore passing the output of the CNN into both the
LSTM and the DNN. Table 7 indicates that this does not yield gains
over the CLDNN alone. This indicates that temporal processing of
CNN features using the LSTM is sufficient, and more information is
not gained by additionally passing CNN features into the DNN.

5. RESULTS ON LARGER DATA SETS

In this section, we compare CLDNNs and LSTMs, as well as multi-
scale additions, on larger data sets. Note when we say multi-scale

Method WER

LSTM 17.7

CLDNN, long-term feature to LSTM | 17.0
+ short-term feature to LSTM 16.8

+ CNN to LSTM and DNN layers 17.0

Table 7. WER with Multi-scale Additions

CLDNN, we just include results passing short and long-term features
into the LSTM, and omit passing the CNN into both the LSTM and
DNN, as only the first technique showed gains in Section 4.6. In
addition, in this section we report numbers after both cross-entropy
(CE) and sequence training [17], a strategy which has shown to give
consistent gains over CE training [20].

Table 8 shows the WER for the 3 models when trained on a
2,000 hour clean data set, and then evaluated on a clean test set.
With both the CLDNN and multi-scale additions, we can achieve a
6% relative reduction in WER over the LSTM after CE training, and
a 5% relative improvement after sequence training.

Method WER-CE | WER-Seq
LSTM 14.6 13.7
CLDNN 14.0 13.1
multi-scale CLDNN 13.8 13.1

Table 8. WER, Models Trained on 2,000 hours, Clean

Finally, Table 9 illustrates the WER for the 3 models when
trained on a 2,000 hour noisy training set, and then evaluated on
a noisy test set. At the CE level, the CLDNN provides a 4% rela-
tive reduction in WER compared to the LSTM, and including the
multi-scale information again provides a small additional improve-
ment. After sequence training, the CLDNN provides a 7% relative
improvement over the LSTM. The improvements with CLDNNs
on larger data sets and after sequence training demonstrate the
robustness and value of the proposed method.

Method WER-CE | WER-Seq
LSTM 20.3 18.8
CLDNN 19.4 17.4
multi-scale CLDNN 19.2 174

Table 9. WER, Models Trained on 2,000 hours, Noisy

6. CONCLUSIONS

In this paper, we present a combined CNN, LSTM and DNN ar-
chitecture, which we call CLDNN. The architecture uses CNNs to
reduce the spectral variation of the input feature, and then passes
this to LSTM layers to perform temporal modeling, and finally out-
puts this to DNN layers, which produces a feature representation that
is more easily separable. We also incorporate multi-scale additions
to this architecture, to capture information at different resolutions.
Results on a variety of LVCSR Voice Search tasks indicate that the
proposed CLDNN architecture provides between an 4-6% relative
reduction in WER compared to an LSTM.
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