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ABSTRACT

The deep neural network component of current hybrid speech

recognizers is trained on a context of consecutive feature

vectors. Here, we investigate whether the time span of this

input can be extended by splitting it up and modeling it in

smaller chunks. One method for this is to train a hierarchy

of two networks, while the less well-known split temporal

context (STC) method models the left and right contexts of a

frame separately. Here, we evaluate these techniques within

a convolutional neural network framework, and find that the

two approaches can be nicely combined. With the combined

model we can expand the time-span of our network to 69

frames, and we achieve a 7.5% relative error rate reduction

compared to modeling this large context as one block. We

report a phone error rate of 17.1% on the TIMIT core test set,

which is one of the best scores published.

Index Terms— Deep neural network, convolutional neu-

ral network, maxout, split temporal context, TIMIT

1. INTRODUCTION – RELATION TO PRIOR WORK

The deep neural network (DNN) component of the state-of-

the-art HMM/DNN speech recognizers is routinely trained on

a large context window of feature vectors. Most commonly,

the DNN operates on a block of 9-26 consecutive frames [1,

2, 3], but some studies even go up to 51 frames [4]. Some re-

searchers argue that the impressive gain of DNN-based mod-

els over standard HMMs can almost entirely be attributed to

this larger context of input – more precisely, to the fact that

DNNs can efficiently extract information from this large set of

non-linearly correlated features, while Gaussian-based mod-

els cannot [5]. But even DNNs may benefit from process-

ing the input in a structured form, instead of using large uni-

form fully connected layers. The simplest way to do this is

to divide the input into smaller chunks, and combine the local

pieces of information extracted from these chunks at higher
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layers. In the case of speech signals, one may chunk the in-

put along either frequency and/or time. A multi-band scheme

of decomposing the frequency axis was suggested almost two

decades ago [6]. More recently, the best recognition results

are achieved by convolutional neural nets (CNNs), which also

process smaller, frequency-localized windows separately. Al-

though the main power of CNNs lies in the so-called pooling

operation, as a side-result we observed that chunking the input

along the frequency axis already improves the results, without

any shifting and pooling [7, 8].

As regards the time axis, the classic literature on (shal-

low) hybrid HMM/ANN systems suggests training the neural

network on a context of 9-11 frames [9]. With the advent of

deep networks, most research teams apply larger context win-

dows of 17-26 frames [2, 3]. In one of the early studies on

DNNs, Mohamed et al. found that increasing the observation

context from 11 to 17 or even 27 frames improved the results,

but the error rate started to rise at 37 frames [2]. Applying

information theoretic methods, Scanlon et al. found that the

information about the identity of a given phone spreads out

about ±8 frames around the center frame of the phone [10].

This explains why simply increasing the context size beyond

a certain point yields no further gain in performance.

In this paper, we examine whether we can make use of a

larger context by splitting it up and processing it in smaller

chunks. The better-known way of doing this is to create a hi-

erarchy of two networks. Here, the lower network processes

context windows of the usual size, and then a second network

is trained on a context of output vectors coming from the first

network. This technique is usually referred to as the hierar-

chical [11, 12] or stacked [13] modelling approach. But the

operation of this model can also be interpreted as a convo-

lution in the time domain [14]. We evaluated this approach

on the TIMIT phone recognition task, and it significantly im-

proved the recognition scores of both standard DNNs [15] and

convolutional networks [7].

A less well-known technique is the split temporal con-

text (STC) method, originally introduced for shallow net-

works [16]. Here, the observation context of the actual frame

is split into a left and a right part, then separate networks are
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Fig. 1. Illustration of the network structures applied here. For clarity, full connections between layers are denoted here by just

a single line. (a) A convolutional network that splits the input along frequency. (b) A convolutional STC network that splits the

input along time as well. (c) A hierarchical CNN that combines the local outputs of a sub-network.

trained on the two parts, and their outputs are finally merged.

More recently, the STC method was also evaluated in the

framework of DNNs. Siniscalchi et al. got an improved

LVCSR performance with DNNs using STC [17], while Li

and Kim reported both better results and a reduction in the

number of parameters when using STC for a noisy speech

recognition task [18]. Baccouche et al. experimented with

splitting the context into more than two blocks [19].

Here, we evaluate the STC approach within the frame-

work of convolutional neural networks, which, to our knowl-

edge, has not yet been investigated. Moreover, we will com-

bine the STC method and the hierarchical approach to get an

improved modeling of a long-span temporal context. We will

evaluate the techniques examined on the TIMIT dataset.

2. MODELING LONG TEMPORAL CONTEXTS

2.1. Convolutional neural networks

A convolutional neural network will serve as our baseline sys-

tem [1, 8, 20, 21, 22]. The structure of this network is demon-

strated schematically in Fig.1a. The input to the network con-

sists of the output of 40 mel filter bank channels plus the

frame-level energy, along with the corresponding ∆ and ∆∆

parameters. The lowest, convolutional layer of the network

divides the frequency axis into 7 wider frequency bands (the

figure shows only 3 of these for clarity), and processes these

by using separate sets of dedicated convolutional neurons or

‘filters’. The output of the convolutional filters are concate-

nated and processed by three additional, fully connected lay-

ers (only two of these are shown in the figure). All network

configurations studied here apply maxout neurons in both the

convolutional layer and the fully connected layers [22]. More

details on the operation, structure and parameter settings of

the baseline model can be found in our earlier papers [7, 22].

While the baseline CNN divides and applies convolution

along the frequency axis, it treats the time axis just like a fully

connected DNN. A context of 17 consecutive frames served

as the input for the baseline model, and the goal of this study

was to examine how this time span could be extended using

various splitting strategies. It should be added that these split-

ting strategies do not affect how the model applies convolu-

tion along the frequency axis in any way.

2.2. Deep split temporal context

The ‘split temporal context’ (STC) method was introduced in

the framework of shallow HMM/ANN hybrids by Schwarz

et al [16]. They assumed that the left and right contexts of

the actual frame contain sufficient information for the iden-

tification of the frame, and these pieces of information are

nearly independent. Based on this, they trained separate sub-

networks on the two contexts, and merged their output only at

a later stage. More recently, the STC approach was evaluated

using DNNs instead of shallow networks, and an improved

performance was reported for a large vocabulary task [17].

When using deep networks, Li et al. observed that one can

also vary the position of the layer where the merging occurs.

They got the best results when all the hidden layers were split,

and the merging was performed by the uppermost softmax

layer. We will mainly follow their slightly modified STC ap-

proach that they call the ‘deep split temporal context’ (DSTC)
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technique [18]. We should also add that it is possible to divide

the context into more than two blocks [19, 18], but here we

will just use a simple left-right context division.

Fig. 1b shows what happens if we apply the STC method

to a CNN. As can be seen, the input is split at the actual frame,

and the lowest layers are also split to process the left and right

parts separately. As an example, in the figure the convolu-

tional and one hidden layer are split. However, we will exam-

ine the optimal number of split layers experimentally.

2.3. Hierarchical modeling

The hierarchical modeling method stacks two networks on top

of each other (see Fig. 1c). The lower network is trained on a

context of acoustic feature vectors, and then a second network

is trained on a context of posterior output vectors got from the

first network [11, 23]. The time-span of this two-stage model

can be easily increased if the upper, merger network oper-

ates on vectors that are placed farther apart, instead of using

consecutive output vectors from the lower net [12]. Fig. 1c

illustrates the case where the upper network combines three

output vectors from the lower net, which are two frames apart.

Veselý et al. showed that the hierarchy of the two

networks can be trained as one unit, and argued that the

compound network can be interpreted as a model that per-

forms convolution along time [14]. We achieved the best

known phone recognition accuracy on TIMIT using a model

that combines convolution along the frequency axis and a

Vesely’s-like convolution along the time axis [22].

The hierarchical model of Fig. 1c and the STC model

of Fig. 1b are fundamentally different. First, while the sub-

networks of the STC model have their own weights, the repli-

cas of the lower network of the hierarchical model share the

same weight set. Second, the sub-networks of the STC model

are trained to recognize the label of the same input frame

which is at the center position of the full context. In the hi-

erarchical model, the lower network gives local estimates at

several, different positions, and the merger network combines

these into a single posterior estimate for the center position.

As the goal of STC is to give improved posterior estimates

at a given position, while the essence of the hierarchical ap-

proach is to merge local estimates obtained at different posi-

tions, it is clear that the two approaches can be readily com-

bined. For this purpose, we simply have to apply the STC

method to the lower network of the hierarchical model. We

will present experiments with this construct later on.

3. EXPERIMENTAL SETUP

The results reported are phone recognition error rates on the

well-known TIMIT database. The training set consisted of

the standard 3696 ‘si’ and ‘sx’ sentences. A random 10% of

the training set was held out as the ‘development set’, which

was used only for the early stopping of DNN training, and

Fig. 2. Phone error rate as a function of the size of the input

context (number of frames). Results are shown for the devel-

opment set and the full test set, for the standard ‘joint’ (JTC)

and the split (STC) temporal context modeling schemes.

no meta-parameter was tuned on it. For testing we used the

full test set, as we thought the core test set was too small to

draw reliable conclusions. However, since most comparative

results are available only for the core test set, the best per-

forming model was evaluated on the core set as well.

To get frame-level labels for training, forced alignment

was performed with a conventional context-dependent HMM

of 858 tied states. The phone label outputs were mapped to

the usual set of 39 labels in the evaluation phase. During

decoding a phone bigram language model was used. To be

consistent with earlier studies on TIMIT (e.g. [2]), the lan-

guage model weight and the phone insertion penalty parame-

ters were set to 1.0 and 0.0, respectively.

The DNNs were trained using semi-batch backpropaga-

tion, with a batch size of 100. The training target function was

the standard frame-level cross-entropy cost. The initial learn

rate was set to 0.001 and held fixed while the error on the de-

velopment set kept decreasing. Afterwards it was halved after

each iteration, and the training was halted when the error rate

decreased less than 0.1% in two subsequent iterations.

Apart from the softmax output layer, all the neurons of the

networks were maxout units. Our baseline CNN consisted of

one convolutional layer with 7 times 756 convolutional units,

and 3 fully connected layers with 2714 neurons per layer [22].

4. RESULTS AND DISCUSSION

In the first experiment we examined how the input context

size influences the recognition error rate. For this purpose, we

set the number of neighbors used to 4, 8, 16, 24 and 32 frames

(corresponding to input sizes of 9, 17, 33, 49 and 65 frames,

respectively). First, we applied the standard, ‘joint’ represen-

tation method, where the frames are simply concatenated. As

Fig.2 shows, on the development set the error rate quickly

saturates at a context size of 17 frames, and does not improve
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Number of split layers Dev. set Test set

1 15.7% 17.2%

2 15.4% 17.0%

3 15.1% 17.0%

4 15.1% 17.0%

Table 1. Phone error rates obtained by varying the number of

split layers.

for larger context sizes. On the test set the error even starts

to increase beyond 33 frames. This clearly shows that simply

increasing the context can be detrimental beyond a point.

Next, we repeated the experiment with the STC model.

The input context was split into left and right parts, with 3

frames of overlap. As Li got better results with more layers

split [18], we decided to split the convolutional layer and two

hidden layers, while the uppermost hidden layer was left in-

tact. As the splitting decreases the number of connections, the

number of neurons in the split layers was increased so that the

joint and the split models had the same number of parameters.

As can be seen in Fig.2, for larger context sizes the phone

error rate of the STC model also saturates and then starts to in-

crease, but the optimum is attained at a later point (49 frames

for the development set and 33 frames for the test set). Also,

STC gives a moderate but consistent improvement in the er-

ror rate. For instance, at 33 frames the gain is 0.4% absolute

(about 2.3% relative) on the test set, which proved to be sig-

nificant with p < 0.003 in a paired t-test.

Yet another parameter of STC is the number of layers that

are split. To test it, we varied the number of split layers from 1

to 4. That is, in the first case only the convolutional layer was

split, while in the latter case the merging of the two network

parts was performed by the output layer. Just as in the pre-

vious experiment, we ensured that the final parameter count

of all models was the same by allocating more neurons for

the split layers. The context size in this experiment was set to

33 frames. As shown in Table 1, we found that the merging

of the two network parts could be delayed even until the fi-

nal softmax layer, which accords with the observation of Li et

al [18]. In all the subsequent experiments, we used the model

that has 3 split and 1 merged hidden layers.

4.1. Combining STC with the hierarchical model

The hierarchical architecture of Fig.1c proved very efficient

in our earlier studies [15, 7, 22], and was successfully used

by other authors as well [13]. Although in earlier studies we

applied two hidden layers in the upper, merger part of our net-

work, here the softmax output layer was adjusted to perform

the merging, without any additional hidden layers. The mo-

tivation for this was to get a fair comparison, as this way the

parameter count of the baseline, the STC and the hierarchi-

cal models were roughly the same. The hierarchical model

merged five output vectors from the lower sub-networks, the

Network type Devel. set Test set

baseline 15.7% 17.7%

STC 14.8% 17.1%

hierarchical 14.8% 17.0%

STC+hierarchical 14.0% 16.6%

STC+hier.+dropout 13.4% 16.2%

Table 2. Phone error rates with STC, with hierarchical mod-

eling, and with their combination.

vectors lying 5-5 frames apart, which we found to be the best

configuration earlier [15]. Both the baseline ‘joint’ model and

the STC model were turned into a hierarchical model to see

how this technique performed by itself, and in combination

with STC. In both cases the models with 49 frames of context

were extended, hence the hierarchical version of the models

covered a time-span of 69 frames.

The results in Table 2 show that, compared to the base-

line, the STC method and the hierarchical scheme yield about

the same gain. Moreover, as they are based on different

paradigms, they can be efficiently combined to get an even

better result. Compared to the case of modeling 69 frames

the conventional way (cf. Fig 2), the combined model yields

about 7.5% relative error rate reduction on the full test set.

In all previous experiments we observed that the improve-

ment on the test set was usually smaller than on the develop-

ment set, which can be a sign of overfitting. So, we retrained

the best model using dropout, which is a simple and recently

very popular method to alleviate overfitting [24]. As the last

row of Table 2 shows, this way the combined model achieved

13.4% on the development set. By comparison, this score is

practically equivalent with our earlier best result [22], but the

model applied here contained two fewer hidden layers. For

comparison, the best model was also evaluated on the core

test set, and attained an error rate of 17.1%. Although this

is worse than the 16.5% we achieved with using two more

hidden layers [22], it still compares favorably with the next

best reported scores of 17.4% got using CNNs with multi-

resolution scattering features [25], or the 17.7% got with a

recurrent network [26].

5. CONCLUSIONS

Here, we proposed a deep convolutional network architecture

that combines the split temporal context and the hierarchical

modeling approaches in order to expand the time-span of the

network. We found that the advantages of the two methods

can be combined, and with the compound model we could

expand the time-span of our CNN to 69 frames. With this

model we got a 7.5% relative error rate reduction compared

to modeling this large context as one block, and obtained a

phone error rate of 17.1% on the TIMIT core test set, which

is among the best reported scores to date.
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