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ABSTRACT

Deep neural network (DNN) based speech recognizers have
recently replaced Gaussian mixture (GMM) based systems as
the state-of-the-art. HMM/DNN systems have kept many re-
finements of the HMM/GMM framework, even though some
of these may be suboptimal for them. One such example is
the creation of context-dependent tied states, for which an ef-
ficient decision tree state tying method exists. The tied states
used to train DNNs are usually obtained using the same tying
algorithm, even though it is based on likelihoods of Gaus-
sians. In this paper, we investigate an alternative state cluster-
ing method that uses the Kullback-Leibler (KL) divergence
of DNN output vectors to build the decision tree. It has al-
ready been successfully applied within the framework of KL-
HMM systems, and here we show that it is also beneficial for
HMM/DNN hybrids. In a large vocabulary recognition task
we report a 4% relative word error rate reduction using this
state clustering method.

Index Terms— Speech recognition, deep neural net-
works, state tying, Kullback-Leibler divergence

1. INTRODUCTION

Deep neural network (DNN) based hybrid speech recogniz-
ers are nowadays regarded as the state-of-the-art and have
replaced conventional Gaussian mixture modeling (GMM)
based hidden Markov models (HMMs). Since the introduc-
tion of HMMs, the speech community developed many tech-
niques to optimize the process of the training of GMM-based
acoustic models. HMM/DNN hybrid systems have inherited
most of these methods, even though some of these may be
inappropriate for them. Two such examples are the flat start
training scheme and the creation of context-dependent (CD)
phone models, which are vital components of conventional
HMM/GMM systems.
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More specifically, HMM/GMM systems are usually
trained by an iterative re-estimation and re-aligment of
the models, also known as ’flat start’ training. Since it is
not obvious how to perform such a flat start training with
HMM/DNN-based acoustic models, most HMM/DNN sys-
tems are trained on frame-level labels that were obtained
from a previously trained HMM/GMM system using forced
alignment. Although sequence-based training strategies have
begun to emerge, these still give better results when initialized
with frame-level training [1]. Quite recently, it was shown by
several researchers that, if done with proper caution, flat start
training can also be performed with DNNs [2, 3].

While hybrid models applied only context-independent
(CD phone models for a long time [4], there is now com-
mon agreement that HMM/DNN systems also greatly bene-
fit from using context-dependent tied states [5, 6]. Thus, it is
necessary to find an approach for efficiently creating context-
dependent tied states in DNN systems. However, this seems
to be a more challenging task than flat start training.

Currently, the dominant solution is the decision tree-based
state tying method [7]. This technique fits Gaussians on the
distribution of the states, and uses the likelihood gain to gov-
ern the state-splitting process. Thanks to the Gaussian as-
sumption and the decision tree representation, this approach
is computationally very efficient. However, as already men-
tioned, sometimes it may be inappropriate to just impose the
common HMM/GMM-based techniques on the HMM/DNN
training procedure. For several reasons, such as the usage of
different features and the fact that the objective functions dur-
ing training are completely different, this may be so for the
state tying approach.

GMM-based methods assume that the Gaussian compo-
nents have diagonal covariance matrices, and thus require
decorrelated features like cepstral coefficients (MFCCs).
However, it was observed that HMM/DNN hybrids work bet-
ter on more primitive features like mel filter bank energies
[8]. Since conventional HMM/GMM systems cannot be ef-
ficiently trained on these features, one would have to train a
HMM/GMM system on a standard feature set like MFCCs,
create the tied state inventory and alignment, and then discard
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the feature set. Therefore, it may be better to perform the
state clustering not on the raw features, but on the output of a
DNN. This approach was investigated by Senior et al [2]. A
simple modification of this method is to use the activations on
the last hidden layer of the DNN instead of the outputs of the
final softmax layer [9]. In a similar study, Zhang et al. derived
formulas for converting the output of the DNN softmax layer
or a hidden network layer into class-conditional Gaussian
distributions [3]. Note that all these studies manipulated only
the input of the clustering algorithm, but for the clustering
they used the same standard Gaussian-based decision tree
clustering method.

A second argument is that, intuitively, the state clustering
algorithm should split those states where the splitting would
be beneficial for the respective classifier. Since the objective
functions during GMM and DNN training fundamentally dif-
fer, measuring how a Gaussian models a given class may be
unrelated to the difficulty of modeling that class by a DNN
that is able to represent much more complex decision bound-
aries. This suggests that some metric other than the likelihood
of Gaussians should be used by the state clustering process.

Recently, a variant of the decision tree clustering algo-
rithm was proposed that also works on DNN output vec-
tors [10]. In contrast to the earlier cited studies which
converted the DNN outputs into class conditional distribu-
tions and fit Gaussians on these, this algorithm exploits the
fact that the DNN output vectors form discrete probability
distributions. A natural distance function for such distribu-
tions is the Kullback-Leibler divergence [11]. Hence, it is
reasonable to modify the state clustering algorithm so that
it works with the Kullback-Leibler divergence instead of
Gaussian likelihoods. Imseng et al. successfully used this
KL-divergence based state tying routine in the framework of
Kullback-Leibler divergence-based HMMs (KL-HMM) [12].

In this paper, we investigate the applicability of this al-
gorithm for creating tied states in a HMM/DNN hybrid. The
evaluation will be carried out on a large vocabulary speech
recognition task of 28 hours of Hungarian broadcast news
data. As a baseline, a context dependent HMM/DNN hy-
brid that applies conventional GMM-based state tying is used.
Then we repeat the same experiments by training a context
independent (CI) auxiliary neural network, and then create
context-dependent (CD) states by applying the modified, KL-
divergence based clustering code on the network output.

2. DECISION TREE BASED STATE TYING

The decision tree-based state tying algorithm was introduced
by Young et al. [7], and evolved into a vital component of
training large vocabulary speech recognizers. The main idea
is to pool all context variants of a state, and then build a deci-
sion tree by successively splitting this set into two. For each
step, the algorithm chooses one of the pre-defined questions
in such a way that the resulting two non-overlapping sub-sets
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of the original state set S differs maximally. The algorithm
measures this difference by using a likelihood-based decision
criterion. Although minor improvements to the algorithm like
the automatic generation of the questions via clustering were
proposed [13], the main scheme of the method proved so suc-
cessful that it has remained unaltered ever since.

2.1. Likelihood based decision criterion

Odell formulated a maximum likelihood-based decision cri-
teria [14] and proposed a computationally efficient algorithm
by approximating the splitting criterion as

L(8) = —5 (loal20)¥[S(S)]| + K) Y N(s), (D)
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where s € S are the individual states, 3(S) is the variance of
datain S, and N (s) is the number of examples (frames) in the
training data which belong to state s. Using this formula, we
should choose the question ¢ which maximizes the likelihood
difference AL(q|S)

AL(qlS) = (L(Sy(q)) + L(Sn(a)) — L(S), @)
where Sy (¢) and S, (q) are the two subsets of S formed based
on the answer to the question ¢. It can be seen that the likeli-
hood values do not depend on the training observations them-
selves, but only on the variance over training data correspond-
ing to the states, and the raw number of frames belonging to
each state. Although this assumption (regarding the variance
of the feature vectors) fits well to a system employing GMMs,
in a HMM/DNN hybrid speech recognizer framework some
other decision criterion might result in a more suitable set of
tied states.

2.2. Kullback-Leibler divergence based decision criterion

This decision criterion was introduced by Imseng et al., who
successfully applied it in their KL-HMM framework [15].
Next, we will give a brief description of this algorithm, based
on articles [10] and [12].

Although the Kullback-Leibler divergence is known to be
asymmetric, unfortunately there is no closed form of the sym-
metric KL-divergence based cost function. Therefore we will
apply the asymmetric KL-divergence between two posterior
vectors z; and y, defined as

. ys(k)
Dicr(ysl|ze) = s (k) log ==, 3)
kL (yslz) ngy (k) log )
where k € {1,..., K} is the dimensionality index of the pos-

terior distribution vector [11]. The KL-divergence is always
non-negative and zero if and only if the two posterior vectors
are equal. So instead of maximizing the likelihood, we will



minimize the KL-divergence
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where S is a set of states s, and F'(s) is the set of training
vectors corresponding to state s. The posterior vector associ-
ated with the set S (ys) can be calculated as the normalized
geometrical mean of the example vectors belonging to the el-
ements of S, i.e.
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After expanding and simplifying, we get [10]
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so the KL divergence of a set of states S can be calculated
based on the statistics ys and N (s) of the individual states.

For the splitting of a set of states S, the straightforward
option is to choose the question that maximizes the KL-
divergence difference AD g, (¢|S):

ADk1(4|S) = Drr(S) — (Dx1(Sy(a)) + D 1r(Sa(a)))-

3. APPLYING KL-BASED STATE TYING FOR
HMM/DNN HYBRIDS

In our baseline system context-dependent HMM/GMM phone
models are trained first, which are then used in force alig-
ment mode to generate CD training labels for the DNN. This
system operates on MFCC features, and was implemented in
HTK [16]. It applies the standard, Gaussian-based state tying
process as part of the training process of the HMM/GMM CD
phone models. Having obtained the clustered states using the
HMM/GMM, a DNN is trained using these tied states as the
training labels. This DNN is used during the decoding pro-
cess, which is preformed by applying a modified version of
the HTK Hdecode routine [16].

The KL divergence-based clustering algorithm requires
CI state label posterior estimates as its input. To get these,
we trained an auxiliary neural network with one hidden layer
(ANN) on the CI labels got from the HMM/GMM system.
Next, we applied the KL-divergence based clustering algo-
rithm on the output of this ANN. Then, having obtained the
clustered states, we trained the DNN using these tied states as
the training labels. Similar to the baseline system, the decoder
used this DNN during recognition.

4. EXPERIMENTAL SETUP

As the DNN component of our hybrid recognizer, we applied
a deep network consisting of rectified linear units as hidden
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neurons [17]. The main advantage of deep rectifier nets is
that they can be efficiently trained with the standard back-
propagation algorithm, without any tedious pre-training [18].
We used our custom implementation, which achieved the best
accuracy known to us on the TIMIT database with a phone
error rate of 16.7% on the core test set [19].

For the actual task we employed a DNN with 5 hidden
layers, each containing 1000 rectified neurons. In the output
layer, we applied the softmax function. We used 40 mel filter
bank energies as features along with their first and second
order derivatives; following the HTK notation, we will refer
to this feature set as the FBANK feature set. Decoding and
evaluation was performed by a modified version of HTK [16].

The speech corpus of Hungarian broadcast news was col-
lected from eight TV channels. From the 28 hours of record-
ings, 22 hours were used as the train set, 2 hours for develop-
ment and 4 hours for testing. The total number of different tri-
phone occurrences was 13,467, resulting in 40,401 initial CD
phone models. We built a trigram language model from a cor-
pus of about 50 million words taken from the www.origo.hu
news portal, using the language modelling tools of HTK [16].
As Hungarian is an agglutinative language with a lot of word
forms, the recognition dictionary consisted of 486,982 words.

Though the DNN was always trained on the FBANK fea-
ture set, we investigated two variants of the auxiliary ANN.
First, we trained it on the MFCC feature set that was also used
by the HMM/GMM system. The second version was trained
on the FBANK feature set that was utilized by the DNN. Note
that for the baseline system we had to use different feature sets
to construct the tied states and for learning them by the DNN
(MFCCs vs. FBANK), as training GMMs on FBANK fea-
tures would have produced unusable results. As the auxiliary
ANN was thrown away after state tying, it contained only one
hidden layer. We will examine the relevance of the size of this
network later on.

For both clustering algorithms, we varied the state ty-
ing stopping threshold to get roughly 600, 1200, 1800, 2400,
3000 and 3600 tied states.

5. RESULTS

As shown in figures 1 and 2, the KL divergence-based clus-
tering method performed consistently and significantly better
than the conventional GMM/HMM clustering on both sets.
The standard algorithm gives the best performance with 600
tied states, though the results are roughly the same across all
state values. The KL-divergence based system has a clear op-
timum at 1200 states, and it yielded a 4% relative error rate
reduction compared to the best score of the conventional sys-
tem. Among the two variants of the auxiliary ANN, the one
trained on FBANK features — that is, the same feature set that
the final DNN was trained on — led to somewhat better scores,
though the difference was not significant.

An obvious drawback of the KL state tying approach over
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Fig. 1. Word error rates as a function of the number of tied
states on the development set.

the conventional algorithm is that we first need to train the
auxiliary ANN to obtain the input of clustering. The GMM-
based method uses Gaussians for the same purpose, and fit-
ting these on the data is much faster than training an ANN.
While it is obvious that the result of the KL divergence-based
method depends on the auxiliary ANN, it is not at all clear
how accurate this network should be. Perhaps a much smaller
network could also lead to similar results, while the training
time could be considerably reduced. To discover if this is so,
we repeated the experiment by varying the size of the hid-
den layer of the auxiliary ANN. The clustering step and the
training of the DNN was the same as in the previous experi-
ments. The state clustering algorithm was configured so as to
get roughly 1200 tied states, as this value gave the best per-
formance earlier.

No. of hidden WER %
neurons Deyv. set { Test set
500 17.38% | 16.76%
1000 17.12% | 16.54%
2000 17.43% | 16.44%

Table 1. Word error rates as a function of hidden layer size
in the auxiliary ANN.

The word error rates for different network sizes are given
in Table 1. Although the size of the hidden layer of the ANN
affected the WER scores, the difference is minimal, and even
the worst scores are much better than the ones obtained via
the GMM-based state tying method. This fact tells us that the
KL-clustering algorithm can give good results even when the
auxiliary network is much smaller than the final DNN.

Besides keeping the auxiliary ANN as small as possible,
there is a further option available to reduce the training time.
Here the idea is to keep the weights of the auxiliary ANN, and
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Fig. 2. Word error rates as a function of the number of tied

states on the test set.

use them to initialize the lowest hidden layer of the DNN.
This might reduce the training time on one hand, and yield
slightly better results on the other. Of course, in this case the
ANN must have the same number of hidden units as the final
DNN, which in our case was set to 1000 units. The results
are listed in Table 2 below. Unfortunately, the accuracy of
the system trained this way was no better than the previous
scores. Further studies are required to see whether this could
be improved if the auxiliary ANN contained more hidden lay-
ers.

State tying method WER %
Dev. set | Test set
KL with MFCC ANN 17.35% | 16.64%
KL with fbank ANN 17.12% | 16.54%
| KL with fbank ANN + ANN init. || 17.38% | 16.79% |
| GMM/HMM clustering | 17.83% [ 17.26% |

Table 2. Word error rates for the different training strategies.

6. CONCLUSIONS

We evaluated a state clustering algorithm that is based on the
KL-divergence of posterior probability distributions. Com-
pared to the standard method that uses the likelihood of Gaus-
sians, this algorithm seems to be more plausible and appropri-
ate when the input data to be clustered are ANN output vec-
tors. Indeed, there is experimental evidence that the KL-based
algorithm to create the CD targets of a HMM/DNN hybrid
yields slightly better recognition scores with the same num-
ber of tied states. In a large vocabulary recognition task we
reported a 4% relative word error rate reduction compared to
that for the standard state clustering method.
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