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ABSTRACT

In this paper we present an investigation of sequence-discriminative
training of deep neural networks for automatic speech recogni-
tion. We evaluate different sequence-discriminative training criteria
(MMI and MPE) and optimization algorithms (including SGD and
Rprop) using the RASR toolkit. Further, we compare the training
of the whole network with that of the output layer only. Technical
details necessary for a robust training are studied, since there is no
consensus yet on the ultimate training recipe. The investigation ex-
tends our previous work on training linear bottleneck networks from
scratch showing the consistently positive effect of sequence training.

Index Terms— deep neural networks, speech recognition, se-
quence training, optimization

1. INTRODUCTION

Hybrid deep neural network (DNN) hidden Markov models (HMMs)
have become the dominant approach for automatic speech recog-
nition (ASR) [1, 2, 3]. In the conventional hybrid HMM frame-
work [4], neural networks (NNs) are trained on frame-level, usu-
ally according to the cross-entropy (CE) criterion. The advantages
of such a frame-discriminative training are its efficiency and its ro-
bustness. Mostly, the training objective is optimized with stochastic
gradient descent (SGD) using a GPU-based implementation.

However, frame-discriminative training considers only the emis-
sion model. The other knowledge sources of the speech recogni-
tion system – the HMM transition model, the pronunciation lexicon,
and the language model (LM) – are not taken into account. In con-
trast, the typical discriminative training criteria used for Gaussian
mixture models (GMMs), e.g. the maximum mutual information
(MMI) [5, 6] and minimum phone error (MPE) [7] criterion, are
defined on sequence-level and include all knowledge sources. In a
number of recent works [8, 9, 10, 11, 12], it has been shown that
hybrid DNN-HMMs can be improved consistently by training them
according to these criteria well-known from GMMs. This type of
training is known as sequence-discriminative training or short se-
quence training.

DNN sequence training has turned out to be a complex technique
and it is not possible to draw clear conclusions from previous work
about the best training setup. In particular, some authors found MPE
or the closely related minimum Bayes risk (MBR) criterion to per-
form better than MMI [11], while others found the converse to be
true [10, 13]. In addition, several authors observed problems with
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the stability of sequence training and proposed different modifica-
tions of the training criteria [10, 11].

Another debated issue is the choice of the optimization algorithm.
Most groups use SGD on utterance-level [10, 11, 12]. Kingsbury et
al. [9] found Hessian-free (HF) [14], a second-order batch algorithm,
which has been specifically designed for neural network training, to
yield improvements over SGD. So far, there has been no comparison
of SGD with other batch algorithms.

In this paper, we present experiments on an English broadcast con-
versations recognition task with our our implementation of sequence
training in the RASR toolkit [15]. We compare different differ-
ent training criteria and optimization algorithms. Our best result is
achieved with the batch algorithm Rprop [16]. As a batch algorithm,
Rprop can be parallelized straight-forwardly. In contrast to HF, it is
simple to implement and has only very few tuning parameters. Fur-
thermore, we extend our previous work on neural networks with a
linear bottleneck structure and show that a slight improvement with
bottleneck network remains after sequence training.

2. SEQUENCE-DISCRIMINATIVE TRAINING

In the following, we define the hybrid DNN-HMM and the two
most common sequence-discriminative training criteria. For nota-
tional convenience, we assume there is only a single utterance with
a feature sequence x = (x1, . . . , xT ) and correct word sequence
w = (w1, . . . , wN ). The Viterbi alignment of the utterance is de-
noted by s = (s1, . . . , sT ). L is a (word) lattice representing the
most likely word sequences of the utterance. We write L(v) for the
sub-lattice of L consistent with a word sequence v.

2.1. Hybrid DNN-HMMs

In hybrid DNN-HMM systems, the DNN is used as a model for the
posterior probability p(s|x) of an HMM state s given an acoustic
observation x. For brevity, we interpret the DNN as a log-linear
model with a parameterized feature extractor φW (x) that is not fur-
ther specified:

pθ(s|x) =
1

Z(x)
exp(λTs φW (x) + αs) . (1)

Here, Λ = (λ1; . . . ;λS) is the weight matrix, α = (α1, . . . , αS)
is the bias vector, W are the parameters of the feature extractor, and
θ = (Λ, α,W ) is the tuple with all parameters of the DNN. The
factor Z(x) is the normalization constant:

Z(x) =
∑
s̄

exp(λTs̄ φW (x) + αs̄) . (2)
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The frame-level posterior can be transformed to a quantity which can
be used as an emission score in an HMM speech recognizer:

p(x|s) =
pθ(s|x)p(x)

p(s)
= C exp(λTs φW (x) +αs− ln p(s)) . (3)

Here, C > 0 is a constant which is independent of s and can there-
fore be discarded in recognition. Dividing by the prior probability is
equivalent to adjusting the bias parameter of the DNN.

2.2. Cross-entropy

The CE criterion is the most common frame-discriminative training
criterion:

F (CE)(θ) = −
∑
t

log pθ(st|xt) . (4)

Note that the CE criterion is well-defined because the output of the
network is normalized. The normalization is performed on frame-
level, thus all states “compete” against each other with equal weight.
In recognition, the normalization constant is not required, see Equa-
tion (3).

2.3. Maximum mutual information

Sequence-discriminative MMI directly optimizes the posterior of the
whole training utterance, thereby taking into account all knowledge
sources of the speech recognition system:

F (MMI)(θ) = − log pθ(w|x) . (5)

The posterior probability of an utterance is of the form

pθ(w|x) =
p(w)qθ(x|w)β∑
v∈L p(v)qθ(x|v)β

(6)

with

qθ(x|v) =
∑

sT1 ∈L(v)

exp
( T∑
t=1

λTstφW (xt) + αst

+ log p(st|st−1)
)
. (7)

It is a common practice in discriminative training (DT) to use acous-
tic model scaling, i.e., to set the LM scale to one and the acous-
tic model scale β to the inverse of the LM scale, which is used
in recognition. Using a weak LM, typically a unigram, is an-
other heuristic which is commonly used in discriminative training
of GMMs [17, 18, 19]. Its aim is to ensure that the set of competing
hypothesis represented by the lattice has enough variation.

Note that in the sequence-discriminative framework, there is no
need to apply the softmax normalization or divide by the state prior.
The softmax normalization cancels in Equation (7) and the bias pa-
rameter is already trained properly.

2.4. Minimum phone error

MPE [7] is commonly regarded as the criterion of choice for discrim-
inative training of GMMs [18, 19]. It optimizes the expected error of
the reference on the training data according to the model. The error
is defined as a local approximation to the Levenshtein distance on
phoneme level. Let EL denote the local distance measure. Then the
MPE objective function is defined as

F (MPE)(θ) =
∑
v∈L

pθ(v|x)EL(w,v) . (8)

The locality of the string distance measure is required to enable the
use of word lattices, which is crucial for the application to large vo-
cabulary continuous speech recognition (LVCSR). The state-level
minimum Bayes risk (sMBR) criterion, which has recently been
used for sequence training of DNNs [9, 11], is obtained with a
slightly different definition of the error measure [20, 21].

In contrast to MMI, the MPE objective function is bounded and is
therefore more robust to outliers. Furthermore, it is generally consid-
ered to be advantageous over MMI because it is more closely related
to the word error rate (WER) – the typical evaluation measure in
ASR.

3. ENHANCEMENTS

Several authors have reported stability problems of sequence train-
ing [10, 11, 12]. The following modifications have been proposed to
improve the performance of sequence training.

3.1. Cross-entropy smoothing

Su et al. [10] emphasize that lattice sparsity is an inherent cause
of instability of lattice-based sequence training. Even when very
dense lattices are employed, only a fraction of the classes are repre-
sented at every frame. Unfavorable scores of unrepresented classes
do not affect the objective function at all. In other words, when
the model changes too much from the one used for generating the
lattices, there is a strong mismatch between objective function and
recognition WER. This problem is especially severe with stochastic
optimization algorithms because of their frequent model updates.

As a solution to this problem, Su et al. [10] proposed smoothing
the sequence-discriminative objective function with the CE objective
function. This yields for example the smoothed MMI criterion:

F (sm−MMI) = (1− γ)F (MMI) + γF (CE) , (9)

with an interpolation factor 0 < γ < 1.
The lattice sparsity can be circumvented completely by comput-

ing the lattices on-demand for every utterance [12]. This approach
however is only feasible within a complex software framework with
a parallelized implementation of asynchronous SGD.

3.2. Frame-rejection heuristic

MMI training is sensitive to outliers, because the objective function
is unbounded. Veselý et al. [11] proposed a frame-rejection heuristic
to make MMI training more robust. According to the heuristic, all
frames t where the probability of the reference state at time t given
the whole observation sequence (known as the state occupancy in
MMI) is smaller than a small threshold are discarded.

In principle, one can discard these frames in MPE training as well,
but we have not found this to give any improvement and do not detail
the results here.

4. OPTIMIZATION

The gradient of sequence-discriminative criteria is computed by
backpropagation as in CE training, only the error signal at the output
layer changes. The error signal is accumulated on a word lattice in
the same way as in conventional discriminative training.

In general, any gradient-based numerical optimizer can be used
for sequence training. One approach is to use stochastic optimiza-
tion, usually SGD, which is the de-facto standard for CE training of
DNNs. SGD scales well to large datasets and can be implemented ef-
ficiently on a GPU. This approach has been taken by [8, 10, 11, 12].
Neural networks with multiple linear bottlenecks can not be trained
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Fig. 1. Evolution of the WER with different variants of MMI. fr
stands for frame rejection and smooth for CE-smoothing

well with SGD. In our previous work [15], we derived a stochastic
algorithm called mean-normalized stochastic gradient descent (MN-
SGD) and showed that it is capable of optimizing such bottleneck
networks from scratch

For sequence training, the advantages of stochastic optimization
are less compelling. First, because of their frequent model updates,
the lattices deviate quickly from the search space of the current
model. Second, with SGD on utterance-level, the data can be shuf-
fled worse than on frame-level. Also, the updates are more heteroge-
neous due to the varying utterance length. In contrast to CE training,
sequence training is initialized with a good model. In this case, batch
algorithms benefit strongly from second-order information. Further,
batch algorithms can be parallelized straight-forwardly and do not
require fiddling with learning rates.

We use the batch algorithm Rprop [16] (more specifically, the
iRprop+ variant proposed in [22]) as an alternative to SGD. Rprop
has separate learning rates for all parameters, which are computed
from sign changes of the gradient. The use of separate learning rates
per parameter corresponds to a diagonal second-order model of the
objective function. So far, the only work where Rprop has been ap-
plied to DNN sequence training is by Kubo et al. [23], but there, a
non-standard training procedure has been used and only the output
layer of the DNN has been trained. In contrast to the HF algorithm
used in [9], Rprop has only very few tuning parameters, is simple to
implement, and has no computational overhead beyond the gradient
computation.

5. EXPERIMENTAL RESULTS

We validated our proposed approach on the English Quaero cor-
pus [24], a broadcast conversations recognition task characterized
by highly spontaneous speech. We use a 50-hour subset of the cor-
pus for training, and the evaluation corpora from 2010 and 2011 as
development and test sets. The development and test sets consist
of 3.7 and 3.3 hours of speech respectively. We implemented the
sequence training in the RASR toolkit [25].

The general training setup of the CE baseline systems is the same
as in [15]. The input to the models is a 493-dimensional vector,
which is derived from Mel-frequency cepstral coefficients (MFCC)
in a sliding window of size 17. The networks have a softmax output
layer representing the 4501 context-dependent states of the GMM
baseline. The recognition lexicon has 150k words. The LM is a
smoothed four-gram, trained on roughly four billion words.

Table 1. WER of the shallow network with different training criteria
and lattices. GM arcs stands for “garbage model arcs”

Criterion Lattices WER [%]
LM GM arcs Dev Test

CE - - 21.8 28.5

MPE
unigram

yes no impr. no impr.

no

21.0 27.4

4-gram
20.3 26.8

MMI 21.0 27.5

We trained three different CE baseline modes, all with sigmoid
units in the hidden layers. The first one is a shallow NN with just
one 2048-dimensional hidden layer. The second is a DNN with six
hidden layers of the same size. The third is a bottleneck network
with the same topology as the DNN, but with a 256-dimensional
linear bottleneck placed after every sigmoid layer. The number of
parameters of the models are 10.2 million, 31.2 million, and 7.9
million for the shallow NN, the DNN, and the bottleneck network
respectively.

The weights of the deep networks are initialized with discrimina-
tive pre-training [26]. CE training of the shallow NN and the DNN
is performed with SGD. The bottleneck network is trained with MN-
SGD. In [15], we observed that the WER continues decreasing after
the validation frame error stagnates. Therefore, we adapt the learn-
ing rate based on the training error and use early stopping for regu-
larization.

The error rates of the baseline models are shown in the first rows of
Table 1, 2, and 3. Note that the bottleneck network outperforms the
DNNalthough it has even less parameters than the shallow model.
The CE results here are slightly better than in [15] because of a tech-
nical detail. Our phoneme set contains a garbage model which is
used for pronunciations of short word fragments, which appear fre-
quently in spontaneous speech, for example in contexts like “nat-
natural” or “wou- should”. Including the garbage model in the NN
training unexpectedly improved the WER of the DNN and the bot-
tleneck model by 0.2 and respectively 0.4 percent.

The lattices are generated with the CE models and kept fix for the
whole training. We used the training lexicon for lattice generation.
The same LM is used for lattice generation and sequence training.
The force-aligned reference is merged into the lattice. The average
number of lattice arcs per reference word is between 300 and 500.

The sequence trainings are initialized with the CE models with
adapted bias parameters. We use fixed learning rates between 10−3

and 10−5 for the experiments with SGD and MN-SGD. Rprop is
applied with the standard hyperparameters from [16]. The initial
step size is set to a small value which ensures stable optimization.
For all experiments, the best epoch is selected on the validation set.

5.1. Initial experiments with the shallow network

In our first experiments with sequence training, we observed a strong
degradation of the models. Our first results are therefore obtained
in the most controlled setup – we only train the output layer of a
shallow network. We use SGD for optimization.

Figure 1 shows the evolution of the WER with different MMI vari-
ants. Without smoothing, the WER increases quickly. The same be-
havior is observed with MPE training (not shown in the figure). The
frame rejection heuristic discards roughly five percent of the training
data with a threshold of 10−6. We only obtain improvements with
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Table 2. WERs of the DNN with CE training and MPE training with
Rprop and SGD

Algorithm Layers trained #Epochs WER [%]
Dev Test

CE baseline all 26 18.5 24.6

SGD all 11 17.6 23.5
output layer 14 17.8 23.7

Rprop all 29 17.5 23.3
output layer 24 17.5 23.3

MMI when both, the frame rejection heuristic and CE smoothing
are active. All results shown in the following are obtained with CE
smoothing with interpolation factor 0.1 and additionally the frame
rejection in the case of MMI.

The lattice creation is a technical but crucial step for getting im-
provements with sequence training. With our standard lattice gen-
eration setup, i.e., with unigram LM and training lexicon, some
phonemes are strongly overrepresented. In particular, words with
garbage model pronunciation blow up the lattices. Therefore, se-
quence training focuses on discriminating the garbage model from
the reference state, although the garbage model is not used in the
recognition lexicon at all. We fixed this by adding a large penalty on
the garbage model of the network used for lattice generation. The
results in Table 1 show that this fix is necessary for getting improve-
ments on this task. In addition, we observed that arcs with very short
words like “I” or “a” and interjections and disfluencies like “um” or
“huh” dominate the lattices. This is a consequence of using a un-
igram LM and can be avoided with a higher-order LM, see Table
1. Note that this observation is in contrast to results in discrimina-
tive training literature, e.g. [17, 18, 19], where a unigram LM is
preferred. We conjecture that a higher-order LM is preferable on
spontaneous speech tasks, where the word boundaries are not acous-
tically distinct.

Finally, we found MPE to perform clearly better than MMI – with
the best lattice configuration MPE achieves a WER of 26.8 percent
WER in comparison to 27.5 percent WER with MMI training. This
is an improvement of 2.3 percent absolute over the CE baseline.

5.2. DNN results

According to the findings in the experiments with the shallow net-
work, we used four-gram lattices and CE-smoothed MPE for the
DNN sequence trainings. In this set of experiments, we compare
the performance of SGD and Rprop. This question might also de-
pend on whether the complete network or only the output layer is
trained. The results are shown in Table 2.

One could suspect that it is important to include the hidden lay-
ers in sequence training, because they amount to more than seventy
percent of the parameters. However, we only observed a small im-
provement of 0.2 percent WER in the case of SGD by training the
complete network.

The best results are obtained with Rprop. As expected, Rprop re-
quires more epochs than SGD. On the other hand, we ran SGD with
two different learning rates in parallel, which is not necessary for
Rprop. In addition, the gradient computation required for Rprop can
be distributed.

The aim of CE smoothing is to avoid problems occurring when the
lattices do not fit well to the model. This raises the question whether
CE smoothing is only beneficial for stochastic gradient training –
the case which Su et al. [10] studied – or for batch training as well.

Table 3. WERs of the bottleneck-DNN with CE training and MPE
training with Rprop and (MN-)SGD

Algorithm Layers trained #Epochs WER [%]
Dev Test

CE baseline all 26 18.0 23.7

MN-SGD all 10 17.5 23.2
SGD output layer 11 17.5 23.2

Rprop all 31 17.4 23.0
output layer 18 17.6 23.1

Therefore, we ran an unsmoothed MPE training with Rprop. We
observed that the WER does not diverge directly as with SGD, but
already after two epochs. The WER at this point is 18.1 percent on
the development data and 24.3 percent on test, which is far from the
improvement obtained with smoothed MPE.

5.3. Bottleneck network results

In our final experiments, we investigate whether the improvements
obtained with bottleneck networks persist after sequence training.
The results are shown in Table 3. The improvements from sequence
training are smaller than with the DNN. Still, a small but consistent
improvement of the bottleneck networks remains. The best result is
again achieved with Rprop. The improvement over the full DNN is
0.3 percent WER on the test data.

6. CONCLUSION

Sequence training of DNN-HMMs has been shown to give substan-
tial improvements on state-of-the-art speech recognition systems.
However, sequence training is a technically complex technique and
there is no common agreement on the best training configuration.

We presented experiments with our implementation of sequence
training, which is part of the freely available RASR toolkit [25]. Our
experiments on a broadcast conversations recognition task provide
more empirical evidence on the best choice of the training criterion,
training enhancements, and the optimization algorithm.

In particular, we found the CE smoothing proposed by Su et al.
[10] to be essential for getting improvements. Su et al. only eval-
uated this technique with SGD optimization and only applied it to
MMI. So far, their idea has not been taken up by other authors. It is
not clear why the lattice sparsity has not caused similar problems in
the works by Kingsbury et al. [9] and Veselý et al. [11]. One reason
might be that their lattices are are generated with a WFST decoder,
while we use a dynamic decoder. In our opinion, this is an important
issue, which requires further analysis.

The question which optimization algorithm should be used does
not have a simple answer. McDermott et al. [13] applied sequence
training on very large datasets and found that asynchronous SGD
converges already before the data is processed even once. The
behavior with larger acoustic models however might be different.
Rprop on the other hand can be parallelized straight-forwardly, and
does not require learning rate tuning. Furthermore, we observed im-
provements with Rprop over SGD in WER.

Finally, we investigated neural networks with a linear bottleneck
structure, based on our previous work [15]. We found that a small
gain due to the bottleneck structure persists after sequence training.
The bottleneck network in this experiment has only a quarter of the
parameters of the original DNN without linear bottlenecks.
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normalized stochastic gradient for large-scale deep learning,”
in Proc. of the Int. Conf. on Acoust., Speech, and Signal Pro-
cess. (ICASSP), Florence, Italy, May 2014, pp. 180–184.

[16] M. Riedmiller and H. Braun, “A direct adaptive method for
faster backpropagation learning: The RPROP algorithm,” in
Proc. of Int. Conf. on Neural Networks (ICNN), San Francisco,
CA, USA, Mar. 1993, pp. 586–591.
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