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ABSTRACT

This paper presents a deep recurrent regularization neural
network (DRRNN) for speech recognition. Our idea is to
build a regularization neural network acoustic model by con-
ducting the hybrid Tikhonov and weight-decay regularization
which compensates the variations due to the input speech
as well as the model parameters in the restricted Boltzmann
machine as a pre-training stage for feature learning and struc-
tural modeling. In addition, a new backpropagation through
time (BPTT) algorithm is developed by extending the trun-
cated minibatch training for recurrent neural network where
the minibatch BPTT is not only performed in recurrent layer
but also in feedforward layer. The DRRNN acoustic model
is accordingly established to capture the temporal correla-
tion in a regularization neural network. Experimental results
on the tasks of RM and Aurora4 show the effectiveness and
robustness of using DRRNN for speech recognition.

Index Terms— Recurrent neural network, model regular-
ization, deep learning, acoustic model

1. INTRODUCTION

Deep neural network (DNN) has been widely demonstrated
to achieve high performance in large vocabulary continuous
speech recognition [1, 2]. Such an DNN system is typically
trained from a large collection of speech utterances which
cover a variety of phonetics, speakers, environments, com-
munication channels, etc. The trained DNN based on the
maximum likelihood (ML) estimation or the cross-entropy er-
ror minimization may be overtrained or mismatched with the
test conditions. Also, the temporal correlation in deep repre-
sentation is not well characterized in standard DNN acoustic
model. This paper aims to tackle the model regularization
and capture the temporal correlation for DNN speech recog-
nition. We accordingly develop the deep recurrent regulariza-
tion neural network (DRRNN) for robust speech recognition.

To deal with the regularization issue, the weight-decay
regularization or Gaussian prior [3] was introduced in the
cross-entropy error minimization which performed the maxi-
mum a posteriori training. Model complexity was controlled
to avoid the over-trained system. In [4], a dropout scheme was

developed to resolve the regularization issue for DNN acous-
tic modeling. Dropout was performed by randomly pruning
a subset of hidden neurons in each layer during training pro-
cedure. Instead of pruning hidden neurons, the dropconnect
randomly pruned a subset of weights between network layers
[5]. To characterize the temporal dependency in sequential
generation of speech samples, the recurrent neural network
(RNN) was developed for acoustic modeling [6]. The RNN
language model was proposed to capture the temporal depen-
dency in lexicon generation [7]. More recently, the deep RNN
was proposed for robust speech recognition [8, 9]. In [10], the
truncated minibatch backpropagation through time (BPTT)
was introduced to tackle the issue of non-uniform contribu-
tion when calculating the minibatch gradient.

This paper presents the Tikhonov regularization for deep
RNN acoustic modeling. Our motivation is to compensate the
perturbations over training samples and come out with a ro-
bust latent variable model which holds the property of invari-
ance due to the transformation of input data. This Tikhonov
regularization is combined with the weight-decay regulariza-
tion in a pre-training procedure to increase the rate of con-
vergence when estimating the DNN-hidden Markov model
(HMM) system. RNN is then introduced to improve deep
representation of temporal information in speech samples and
their contexts. We present a new truncated minibatch training
to elevate the performance of BPTT algorithm for DRRNN
acoustic modeling by taking into account error backpropaga-
tion for recurrent layer and feedforward layer.

2. REGULARIZATION NEURAL NETWORK

In the training procedure of DNN, we start from a Gaussian
mixture model (GMM)-HMM system. This GMM-HMM is
applied to find the label of a tied state or senone st = k cor-
responding to each observation frame ot.

2.1. DNN training

We can reliably train a DNN acoustic model based on a pre-
training by using the restricted Boltzmann machines (RBMs).
An efficient learning procedure is to construct a DNN struc-
ture in an unsupervised layer-by-layer manner where the lay-
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ers are made of the stacked RBMs. This pre-training stage
is applied to initialize the weights of a DNN. The contrastive
divergence (CD) algorithm was developed to train each two-
layered RBM. Given the trained model structure and initial
weights, the error backpropagation algorithm is applied to
conduct the supervised training and fine-tune the DNN pa-
rameters. In forward pass, we calculate the outputs of hidden
neurons z

(l)
t = {z(l)tk } at each time t and layer 1 ≤ l < L

where
z
(l)
tk = f(a

(l)
tk ) = f((w

(l)
k )T z

(l−1)
t ) (1)

and w
(l)
k denotes the weight parameters which connect all

neurons at layer l− 1 to the neuron k at layer l. Here, the ob-
servation ot is treated as the inputs at initial layer, z(0)t = ot,
and the output vector yt is seen as the outputs of layer L,
z
(L)
t = yt. The activation function f(·) is assigned by the

sigmoid function σ(·) for those neurons in all layers l except
output layer Lwhile f(·) is given by the softmax function s(·)
for those neurons in output layer L. Each output neuron in yt
produces the posterior probability for a senone p(st = k|ot).
DNN training aims to minimize the cross-entropy error func-
tionE(w) between the DNN outputs {ytk} and the target val-
ues {rtk} from N training samples {ot}

E1:N (w) =

N∑
t=1

Et(w) = −
N∑
t=1

K∑
k=1

rtk log ytk (2)

where w = {w(l)
k } and target value rtk of an observation ot

is assigned by 1 if ot corresponds to state k and 0 if ot is
associated with the other states.

2.2. Hybrid regularization

To deal with the over-fitting problem in DNN pre-training,
we modify the objective function in the stochastic gradient
descent (SGD) algorithm by simultaneously considering the
effects of the over-trained model parameters w and the varia-
tions of input data ot in the regularized error function

Ẽ(w) = E(w) + λ1Ω1(w) + λ2Ω2(w) (3)

where λ1 and λ2 are the regularization parameters, Ω1(w) =
1
2w

Tw is the `2 or weight-decay regularization which pre-
vents the over-trained parameters, and Ω2(w) is the Tikhonov
regularization [11, 12, 13] which compensates for the varia-
tions of input data due to a shift parameter ξ via ot → ot + ξ

Ω2(w) =
1

2

∫
‖∇ log p(ot|w)‖2p(ot)dot

=
1

2

D∑
i=1

[
∂ log p(ot|w)

∂oti

]2
≈ 1

2

D∑
i=1

K∑
k=1

(wikhk)
2
.

(4)

Here, w = {wik} denotes the weight parameters between a
visible layer withD inputs ot = {oti} and a hidden layer with

M neurons h = {hk}. In Eq. (4), the likelihood function of
visible data is defined under a Gaussian-Bernoulli RBM as

p(ot|w) =

∑
h

e−E(ot,h|w)

Z(w)
(5)

with a normalization term Z(w) and an energy function
E(ot,h|w) given by

D∑
i=1

(oti − wi0)2

2
−

K∑
k=1

w0khk −
D∑
i=1

K∑
k=1

otiwikhk (6)

where the Gaussian with unit variance is assumed, {wi0, w0k}
denotes the bias parameters, and hk = σ(w0k+

∑D
i=1 otiwik).

After training the first stack of Gaussian-Bernoulli RBM, the
outputs of hidden neurons are treated as the visible data for
training the next stack of Bernoulli-Bernoulli RBM. DNN
structure is stacked through a sequence of RBMs. The hybrid
regularization is performed to assure the robustness of DNN
model with respect to the over-trained parameters and the
shift variations of visible data. The cross-entropy training
is then applied to estimate the model parameters from the
senone labels of training samples and calculate the senone
posterior probabilities from DNN outputs.

3. DEEP RECURRENT NEURAL NETWORK

After building the regularization neural network, we further
capture the temporal correlation in DNN training through the
recurrent neural network (RNN). When the hidden layer l is
modified as the recurrent layer m, where 1 ≤ m 6= l < L, the
outputs of neurons in this layer are calculated by

z
(m)
tk = f((w

(m)
k )T z

(m−1)
t + (w

(mm)
k )T z

(m)
t−1) (7)

where w
(mm)
k denotes the recurrent weights at layer m with

the connection to neuron k.

3.1. Local gradients for error backpropagation

According to the criterion in Eq. (2), we calculate the local
gradients of the neurons in output layer L and in hidden layer
l

δ
(L)
tk =

∂Et(w)

∂a
(L)
tk

=
∂Et(w)

∂ytk

∂ytk

∂a
(L)
tk

= ytk − rtk (8)

δ
(l)
t =

(
(W (l+1))T δ

(l+1)
t

)
∗ z(l)t ∗

(
1− z

(l)
t

)
(9)

where ∗ denotes the element-wise multiplication, δ
(l)
t =

{δ(l)tk }, and W (l) = [w
(l)
1 . . .w

(l)
K ]. The local gradients from

batch data {o1, . . . ,oN} are then calculated to form the ma-
trix δ

(l)
1:N = [δ

(l)
1 . . . δ

(l)
N ] which is applied to find the gradient

over the whole training data with respect to the weight matrix
W (l) as

∂E1:N

∂W (l)
= z

(l−1)
1:N (δ

(l)
1:N )T (10)
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where z
(l−1)
1:N = [z

(l−1)
1 . . . z

(l−1)
N ]. Such a batch training is

different from SGD training where the parameter updating is
performed at each frame t by using z

(l−1)
t (δ

(l)
t )T . A mean-

ingful tradeoff between batch training and SGD training is
to conduct the minibatch SGD training where the weight pa-
rameters are updated right after observing a set of M training
samples {o1, . . . ,oM} where M < N .

Considering the updating of weight matrix in recurrent
layer m in a minibatch SGD training, we calculate the local
gradients for two conditions. First, the local gradient for the
last frame t = M with the minibatch size M has the same
form as Eq. (9) since no recurrent operation is done in the
end of minibatch. Second, for all the other frames within the
minbatch t < M , their local gradients are calculated by

δ
(m)
t =

(
(W (m+1))T δ

(m+1)
t + (W (mm))T δ

(m)
t+1

)
∗ z(m)

t ∗
(
1− z

(m)
t

)
.

(11)

Figure 1 shows the forward and backward passes in DRRNN
and illustrates how the local gradient δ(m)

t is obtained.
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Fig. 1. Backpropagation through time and layer in deep re-
current neural network with two steps back in time T = 2.

3.2. Backpropagation through time and layer

Backpropagation through time (BPTT) is applied for deep
RNN training over a minibatch {o1, . . . ,oM}. A truncated
BPTT was modified to deal with the non-uniform problem in
calculation of minibatch gradient vector [10]. The recurrent
weights W (mm) are updated by minimizing E1:M using

M∑
t=1

∂Et
∂W (mm)

≈
T∑
τ=1

M∑
t=1

z
(m)
t−τ (δ

(m)
t−τ+1)T

=

T∑
τ=1

z
(m)
1−τ :M−τ (δ

(m)
1−τ+1:M−τ+1)T

(12)

where the truncated BPTT with T steps back in time is imple-
mented. Therefore, the local gradient for recurrent weights
W (mm) at time step τ [14] is yielded by

δ
(m)
t−τ =

(
(W (mm))T δ

(m)
t−τ+1

)
∗ z(m)

t−τ ∗
(
1− z

(m)
t−τ

)
. (13)

As shown in the red dashed arrows and red circles in Figure
1, the truncated minibatch BPTT does not only consider the
error backpropagation for the recurrent weights W (mm) but
also the feedforward weights W (m) between recurrent layer
and its previous layer. For this consideration, the updating of
feedforward weights W (m) is performed by

M∑
t=1

∂Et
∂W (m)

≈
T∑
τ=1

M∑
t=1

z
(m−1)
t−τ+1(δ

(m)
t−τ+1)T

=
T∑
τ=1

z
(m−1)
1−τ+1:M−τ+1(δ

(m)
1−τ+1:M−τ+1)T .

(14)

Without loss of generality, we call this algorithm as the
backpropagation through time and layer (BPTTL) where
the BPTT is not only applied for recurrent layer but also
the corresponding feedforward layer. The local gradient for
feedfoward weights W (m) at time step τ is calculated by

δ
(m)
t−τ =

(
(W (m+1))T δ

(m)
t−τ

)
∗ z(m)

t−τ ∗
(
1− z

(m)
t−τ

)
. (15)

4. EXPERIMENTS

4.1. Experimental setup

We evaluated the proposed method for speech recognition
by using the corpora of Resource Management (RM) and
Aurora4. The training set in RM contained 3990 utterances
from 109 speakers with 3.8 hours of speech. The test set
had 1460 utterances from 59 speakers. RM had a vocab-
ulary size of 997 words. Aurora4 was extended from the
Wall Street Journal (WSJ0) corpus with noise contaminations
under different noise types and signal-to-noise ratios. The
training set contained 7137 utterances from 83 speakers with
14 hours. The evaluation set had 4620 utterances (330 utter-
ances × 14 test sets) from 8 speakers, with 40.19 minutes of
speech data, sampled from the 5K-word closed vocabulary
based on the WSJ0 NOV-92 corpus. The 14 test sets were
grouped into four conditions: A (clean data), B (noisy data),
C (clean data with channel distortion), and D (noisy data
with channel distortion). An additional development set in
RM and Aurora4 was used to tune {λ1, λ2} and learning rate
for evaluation of stopping criterion. We followed the shell
scripts of RM and Aurora4 from the Kaldi toolkit [15]. The
baseline GMM-HMM triphone system was trained by using
the feature vector from a context window of seven frames
with 13-dimensional MFCC at each frame. LDA was ap-
plied to project the concatenated features into 40 dimensions
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which were further adapted by MLLT. GMM-HMM system
was used to find the senone labels of speech frames from the
forced-alignment during the initial training of an DNN-HMM
system. Decoding was performed by using bigrams for RM
and trigrams for Aurora4.

In DNN training, we adopted the feature vector from a
context window of 11 frames (± 5 frames). Input layer con-
sisted of 440 units (40 × 11). For RM task, the DNN topol-
ogy was shaped by 6 hidden layers with 1024 neurons in each
hidden layer. The softmax output layer with 1483 units was
constructed for the corresponding senones. For Aurora4 task,
we used the 40-dimensional FBNK features to train DNN sys-
tem which automatically learned the dependencies in FBNK
features. The DNN topology was formed by 7 hidden lay-
ers while each layer had 2048 neurons. The softmax out-
put layer with 2035 units was used. In pre-training phase,
we referred the practical guide for RBM training [16] and
followed the initial learning rate and momentum setup [17].
DNN system was initialized by stacking the layer-wise RBM
based on the CD algorithm with one step of Markov-chain
Monte Carlo sampling. After the pre-training, we estimated
the initial weights and concatenated the output layers to build
the model structure. The weights between last hidden layer
and output layer were randomly drawn fromN (0, 0.01). The
RNN with five steps back in time (T = 5) was adopted.

Methods WER
GMM 1.93
DNN 1.88

+ Tikhonov 1.78
+ `2 1.54
+ Tikhonov + `2 1.46

DRRNN-BPTT 1.41
DRRNN-BPTTL 1.39

Table 1. Comparison of WERs (%) in RM task.

4.2. Evaluation on model regularization

We evaluate the performance of individual and hybrid regu-
larization in a pre-training procedure of a DNN-HMM sys-
tem in terms of word error rate (WER) (%) as reported in
Table 1 for RM task and in Table 2 for Aurora4 task. The
results of GMM-HMM are included. The individual and hy-
brid regularization parameters λ1 = 0.0001 and λ2 = 0.0002
were selected for RM task while λ1 = 0.00005 and λ2 =
0.0002 were chosen for Aurora4 task. We can see that the
hybrid Tikhonov and `2 regularization consistently reduces
the WER over the individual regularization in different tasks.
This shows the benefit of dealing with model regularization in
DNN via joint compensation of the perturbations of training
speech and the over-trained parameters due to the ill-posed
condition.

Methods Conditions Avg.A B C D
GMM 7.29 12.97 12.61 27.66 18.83
DNN 4.33 9.13 11.83 24.69 15.65
+ Tikhonov 3.85 7.94 10.69 22.54 14.10
+ `2 3.36 7.83 10.54 21.93 13.75
+ Tikhonov + `2 3.08 7.58 10.14 21.65 13.47

DRRNN-BPTT 3.44 7.23 8.80 21.05 12.99
DRRNN-BPTTL 3.29 7.09 8.71 20.83 12.82

Table 2. Comparison of WERs (%) in Aurora4 task.

4.3. Evaluation on recurrent neural network

The DNN-HMM with hybrid Tikhonov and `2 regularization
is trained by several learning epochs where the DNN parame-
ters are updated in each epoch by using new alignment based
on the decoding procedure using the new posterior probabili-
ties from DNN outputs. Learning epoch is continued until the
performance gain is saturated. Given the alignment from the
last learning epoch of the regularized DNN-HMM, we fur-
ther train the RNN according to the BPTT and the proposed
BPTTL algorithms. The resulting methods are denoted as
the DRRNN with BPTT (DRRNN-BPTT) and the DRRNN-
BPTTL. In the implementation using RM and Aurora4, the
recurrent weights W (m) were initialized randomly. The re-
current layer was specified as the third hidden layer in RM
and the fourth hidden layer in Aurora4. The minibatch size
was set to be 256 frames for SGD learning. The initial learn-
ing rate was 0.008 and 0.004 for RM and Aurora4, respec-
tively. The sentence-level shuffling was performed in RNN.
The WERs are shown in Tables 1 and 2. We find that the
system performance is improved by using DRRNN where the
regularization issue is tackled and the temporal correlation is
captured. The improvement of BPTTL over BPTT is obtained
in using RM as well as Aurora4.

5. CONCLUSIONS

This paper investigated the importance of model regulariza-
tion and temporal correlation in DNN acoustic modeling. We
presented the hybrid Tikhonov and weight-decay regulariza-
tion to achieve the invariance property in speech samples and
model parameters during a pre-training procedure of DNN-
HMM system. The rate of convergence was increased and
the ML learning was attained. The recurrent neural network
was implemented to characterize the temporal dependency
between speech samples in deep learning. The backpropa-
gation through time and layer was proposed to conduct the
weight updating for recurrent weights as well as the corre-
sponding feedforward weights in a minibatch training proce-
dure. Experimental results on RM and Aurora4 showed the
consistent improvement of WER by using the proposed DR-
RNN over the conventional DNN.
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