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ABSTRACT

Recently, we have proposed a general adaptation scheme for
deep neural network based on discriminant condition codes
and applied it to supervised speaker adaptation in speech
recognition based on either frame-level cross-entropy or
sequence-level maximum mutual information training criteri-
on [1, 2, 3, 4]. In this case, each condition code is associated
with one speaker in data, which is thus called speaker code for
convenience. Our previous work has shown that speaker code
based methods are quite effective in adapting DNNs even
when only a very small amount of adaptation data is avail-
able. However, we have to use a large speaker code size and
complex processes to obtain the best ASR performance since
good initializations of speaker codes and connection weights
are very important. In this paper, we propose a method using
singular value decomposition (SVD) as in [5] to initialize
speaker codes and connection weights to obtain a comparable
ASR performance as before but with a smaller speaker code
size and much less computation complexity. Meanwhile, we
have evaluated unsupervised speaker adaptation with the pro-
posed method in large vocabulary speech recognition in the
Switchboard task. Experimental results have shown that it
is effective for providing well initializations and suitable in
adapting large DNN models.

Index Terms— Deep Neural Network (DNN), Speak-
er Code, Speaker Adaptation, singular value decomposition
(SVD)

1. INTRODUCTION

Speaker adaptation has been an important research topic in
automatic speech recognition (ASR) for decades. Speaker
adaptation techniques attempt to optimize ASR performance
by transforming speaker-independent models towards one
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particular speaker or modifying the target speaker features
to match pre-trained speaker-independent models based on
a relatively small amount of adaptation data from the target
speaker. In the past few decades, several successful speaker
adaptation techniques have been proposed for the conven-
tional HMM/GMM based speech recognition systems, such
as MAP [6, 7], MLLR [8, 9], and CMLLR [10]. Recently, a
number of speaker adaptation methods have been proposed
for neural networks. Successful methods like LIN and L-
HN in [11, 12] add additional layer into neural networks
and alleviate the over-fitting problem to some extent. On
the other hand, Hermitian-based MLP (HB-MLP) method in
[13] achieves the adaptive capability through the use of new
orthonormal Hermite polynomials as activation functions in
NN. The feature discriminative linear regression technique in
[14] and the output-feature discriminative linear regression in
[15] have also been proposed to perform speaker adaptation
for DNNs. Furthermore, it has proposed to use Kullback-
Leibler (KL) divergence as regularization in the adaptation
criterion in [16] since it forces the state distribution estimated
from the adapted DNN to stay close enough to the original
model to avoid over-fitting. [17] augments DNN inputs with
speaker i-vector features to facilitate speaker adaptation and
results in significant improvements. In our previous works
[1, 2, 3, 4], several fast speaker adaptation methods for DNN
and CNN based on the so-called speaker codes have been
proposed, in these methods speaker codes are directly fed
to various layers of a pre-trained DNN through a new set of
connection weights. These methods are appealing because
the connection weights can be reliably learned from the entire
training data set while only a small speaker code is learned
from adaptation data for each speaker. Moreover, the speaker
code size can be freely adjusted according to the amount of
available adaptation data. However, we have to use a large
speaker code size and complex processes to obtain the best
ASR performance since good initializations of speaker codes
and connection weights are very important.

In this paper, we propose a method using singular value
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decomposition (SVD) to initialize speaker codes and connec-
tion weights to obtain a comparable ASR performance as be-
fore but using a smaller speaker code size and less computa-
tion complexity. As opposed to supervised adaptation in our
previous work [1, 2, 3, 4], in this paper, we have evaluated the
proposed adaptation scheme under an unsupervised speaker
adaptation setting for large vocabulary speech recognition in
the Switchboard task. Experimental results have shown that
the proposed hybrid Speaker code and SVD method is robust
to perform effective unsupervised adaptation and it may pro-
vide well initialization for adapting large DNN models.

2. ADAPTATION IN MODEL SPACE BASED ON
SPEAKER CODE

In this work, we study the adaptation in model space based on
speaker code method (mSA-SC) in [4] that conducts speaker
adaptation in model space of DNNs . As show in Fig. 1, the
total neural network consists of initial speaker-independent
weights matrices and a set of new connection weights. we
feed the speaker codes directly to the hidden layers and the
output layer of the initial neural network through the new con-
nection weights. In this way, speaker codes are used to adapt
the speaker-independent DNNs towards new target speakers.

Fig. 1. Adaptation of DNNs based on speaker code.

Let us denote W(l) as the l-th layer weights in the initial
neural network that consists of n layers (including input and
output layer), and B(l) as weight matrix to connect speaker
code to l-th layer in DNNs, and S(c) stands for the speaker
code specific to c-th speaker. For notational simplicity, we
may expand the bias vector into the weight matrix. Each l-
th layer of the neural network receives all activation output
signals of the lower layer along with a speaker specific code,
as follows:

O(l) = σ(W(l)O(l−1) + B(l)S(c)) (∀ l) (1)

Where O(l) denotes outputs from l-th layers of neural net-
works and σ(·) stands for sigmoid based nonlinear activation

function. Assume we need to adapt a well-trained DNN (rep-
resented by W(l)). In the following, we investigate how to
estimate connection weights, B(l), and speaker codes, S(c),
from training data for this adaptation scheme. Assume E de-
notes the objective function for DNN training or adaptation,
such as frame-level cross-entropy (CE) or sequence level min-
imum mutual information (MMI) criterion [4]. For simplicity,
we use the cross entropy criterion for adaptation. During the
adaptation procedure, we only estimate B(l) (for all l) and s-
peaker codes S(c) (for all speakers in the training set) using
the stochastic gradient descent algorithm while keeping al-
l W(l) unchanged. Therefore, the derivative with respect to
any element in B(l), i.e., B(l)

kj , that connects between the k-th
node in the speaker code and the j-th node in l-th layer of
initial neural network can be computed as:
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where S(c)
k that stands for the k-th node in speaker code of

c-th speaker.
Similarly, we compute the derivative of E with respect

to each element of all speaker codes based on the chain rule.
Since the propagation errors from all layers in the neural net-
work contribute to the derivative of S(c)

k , we need to summa-
rize all as follows:
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In learning, we first randomly initialize all B(l) and S(c).
Next, we run several epochs of stochastic gradient descents
over the training data to update B(l) and S(c) based on the
gradients computed in eqs.(2) and (3). For speaker codes,
S(c) is only updated by data from c-th speaker. At the end,
we have learned all weight matrices B(l), which are capable
of adapting the speaker-independent DNN to any new speaker
given a suitable speaker code.

The next step in adaptation is to learn a speaker code for
each new speaker. During this phase, only the speaker code
is estimated based on eq.(3) for the new speaker from a small
number of adaptation utterances while all B(l) and W(l) re-
main unchanged. After the speaker code is learned for each
test speaker, the speaker code is imported into the neural net-
work through B(l) as in eq.(1) to compute posterior probabil-
ities of test utterances for final recognition.

Obviously, a joint training of all parameters (B(l), S(c) and
W(l)) using training data set as well as speaker label can gen-
erates better and more compact models. We call this method
speaker adaptive train based on speaker code (SAT-SC) [4].
After learning all parameters, the adaptation process of a new
speaker is the same as mSA-SC.
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3. SVD BASED INITIALIZATIONS

In this section, we briefly review the basic idea of SVD and
present SVD based initializations of speaker codes and con-
nection weights for mSA-SC and SAT-SC methods.

3.1. Review of SVD

The singular value decomposition (SVD) is a factorization of
a matrix, with many useful applications in signal processing
and statistics. The decomposition of a matrix A can be de-
scribed as follows:

Am×n = Um×mSm×nVT
n×n

≈ Um×kΣk×kVT
k×n

= Um×kNk×n

(4)

Where U is anm×m unitary matrix, the matrix S is anm×n
(we assume m < n) diagonal matrix with nonnegative num-
bers on the diagonal, and the n×n unitary matrix VT denotes
the conjugate transpose of the n × n unitary matrix V. The
diagonal entries si of S are known as the singular values of
A. A common convention is to list the singular values in de-
scending order. In this case, the diagonal matrix S is uniquely
determined by A. We can save k singular values and approx-
imate Am×n with Um×kNk×n.

Previous researches in DNN models with matrix decom-
position mainly focus on reducing the number of parameters
of the neural networks, such as [18, 19, 20]. They decompose
the weights of DNN models with Low-Rank factorization or
SVD to conspicuously reduce the free number of parameters
of the neural networks and then restructure the neural net-
works without a significant loss in final recognition accuracy.

3.2. Initialization Process

In this paper, we propose a method using SVD for the initial-
izations of speaker codes and connection weights to obtain a
compared ASR performance as before but using a smaller s-
peaker code size and less computation complexity. Speaker
codes scheme can be viewed as a constrained modification of
layer biases for each different speaker, it reduces the size of
free parameters for adapting to each new speaker and allevi-
ates the over-fitting problem by using a small training data
set for estimating a set of speaker codes. The performance is
highly dependent on the initializations of speaker codes and
connection weights since we have to tune them at the same
time. Obtaining good initializations quickly and steadily is
very important in this adaptation scheme. We assume that a
good speaker-dependent DNN models can be described as:

O(l) = σ(W(l)O(l−1) + αC(l)(c)) (∀ l) (5)

It consists of two parts, speaker-independent W(l)O(l−1)

and speaker-dependent bias C(l)(c). And α is an adjustable

weight parameter. We can train a robust speaker-independent
part and a set of C(l)(c)(∀ l) for speaker c in the training
set through standard BP algorithm if we have a large num-
ber of labeled data. It means that we can get good C(l)(c)

for all training speakers during training process and then
decompose it using eq.(4) as B(l)S(c). In this case, B(l) is
an m × k matrix and S(c) is an k × n matrix, where m is
the l-th layer size, n is the number of total speakers and k
can be adjusted as the speaker code size, k should be chose
carefully since it is a tradeoff between the number of free
parameters and maintaining model structure. Since those
matrices are generated from well-trained C(l)(c)(∀ l) that are
estimated with a large number of labeled data, we believe
they can model some speaker-independent structure through
B(l) and some speaker-dependent information with S(c). We
then use them like in eqs.(1), either directly as the connection
weights and speaker codes or just as the initializations of
them. After obtaining training speaker codes and connection
weights, adaptation and test processes are the same as de-
scribed in section 2. Our previous work [1, 2, 3, 4] mainly
focus on supervised adaptation. As opposed to them, we have
evaluated the proposed adaptation scheme under an unsuper-
vised speaker adaptation setting for large vocabulary speech
recognition in this paper.

4. EXPERIMENTS

In this section, we evaluate the proposed method for speaker
adaptation in the large-scale 320-hr Switchboard task.

The SWB training data consists of 309 hour Switchboard-
I training set and 20 hour Call Home English training set
(1540 speakers in total). In this work, we use the NIST 2000
Hub5e set (containing 1831 utterances from 40 speakers) as
the evaluation set. We use 39 dimensional PLP features to
train a baseline realigned DNN (retrained by realigned state
labels based on the cross-entropy criterion) as described in
[21, 22, 23, 24] with RBM-based pretraining and BP-based
fine-tuning. Two baseline DNNs with various sizes are built:
i) 3 hidden layers with 1024 nodes in each hidden layer; ii) 6
hidden layers with 2048 nodes in each hidden layer. For train-
ing all parameters, we use the same strategies as described in
[3, 4]. In the evaluation set (Hub5e00), each test speaker has
different number of utterances. The test is conducted for each
speaker with unsupervised adaptation method which means
that all test utterances are used for estimating speaker codes
then obtain the final results through re-decoding.

In this section, we first evaluate the performance of us-
ing only speaker-independent part in the trained models. As
shown in Table 1, the adding of additional speaker-dependent
bias can help to acquire better speaker-independent DNNs.
For example, for 6-layer DNN, it can reduce word error rate
from 15.9% down to 15.4% (about 3.1% relative error reduc-
tion) when using only speaker-independent part. In next ex-
periments we use the best models as the baselines.
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Table 1. WER (in%) of using only speaker-independent part
in DNNs.

DNNs baseline value of α
0.25 0.5 0.75 1.0

3*1024 18.7 18.2 17.7 18.1 18.2
6*2048 15.9 15.5 15.5 15.4 15.4

Next, we consider to use the composed matrices direct-
ly as the connection weights without training of them, D-
ifferent speaker code size is conducted for testing. We al-
so investigate experiments using random initialisation for the
connection weights to demonstrate the effect of SVD (see
6*2048(r)). The results in Table 2 show that the composed
connection weights may bring obvious improvements. For
example, for 6-layer CE DNNs, it reduces WER from 15.4%
down to 14.8% (3.9% relative error reduction).

Table 2. WER (in%) of using static composed matrices as
speaker codes and connection weights.

DNNs baseline speaker code size
200 500 800 1000 1500

3*1024 17.7 17.5 17.5 17.6 17.4 17.6
6*2048 15.4 15.0 14.8 14.9 14.9 15.0

6*2048(r) 15.4 15.3 15.3 15.2 15.3 15.4

Then we consider to use the composed matrices as the ini-
tializations of speaker codes and connection weights and tune
them in mSA-SC scheme. As shown in Table 3, we find that
the training process can only provide small gain compared
with using them directly (for 6-layer CE DNNs and 500 code
size, 1.4% relative error reduction ).

Table 3. WER (in%) of using composed matrices as the ini-
tializations of speaker codes and connection weights in mSA-
SC scheme.

DNNs baseline speaker code size
200 500 800 1000 1500

3*1024 17.7 17.1 16.9 17.0 17.0 17.0
6*2048 15.4 14.7 14.6 14.7 14.7 14.8

At last, we consider to use the composed matrices as the
initializations of speaker codes and connection weights and
tune them in SAT-SC scheme. The results in Table 4 show the
best result we can obtain with SAT-SC scheme. We can al-
so achieve compared performance through other two method-
s in [4]. First is SAT-SC with mSA-SC as initializations (the
best performance 12.5%,speaker code size 1000), second is
SAT-SC using I-Vector as speaker code (the best performance
12.4%,speaker code size 400). Compared with those method-
s, the SVD initialization provide a smaller speaker code size
and less computation complexity. At the same time, it has no
need to estimate the I-Vector for each different speaker.

Table 4. WER (in%) of using composed matrices as the ini-
tializations of speaker codes and connection weights in SAT-
SC scheme.

DNNs criterion speaker code size
200 500 800 1000 1500

3*1024 CE 15.9 16.0 16.0 15.9 16.0
6*2048 CE 14.0 13.7 13.8 13.9 14.1

MMI 12.7 12.5 12.6 12.8 12.9

In summary, the proposed method using SVD to initial-
ize speaker codes and connection weights can obtain a com-
pared best ASR performance as before while using a smaller
speaker code size and less computation complexity. this make
the speaker code based adaptation method more effective for
large and deep neural networks.

5. CONCLUSION

In this paper, we propose a method using SVD to initialize
speaker codes and connection weights to obtain a comparable
ASR performance as before but with a smaller speaker code
size and much less computation complexity. Meanwhile, we
have evaluated unsupervised speaker adaptation with the pro-
posed method in large vocabulary speech recognition in the
Switchboard task. Experimental results have shown that it
is effective for providing well initializations and suitable in
adapting large DNN models.
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