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ABSTRACT

Deep Scattering Network features introduced for image processing
have recently proved useful in speech recognition as an alternative to
log-mel features for Deep Neural Network (DNN) acoustic models.
Scattering features use wavelet decomposition directly producing
log-frequency spectrograms which are robust to local time warping
and provide additional information within higher order coefficients.
This paper extends previous works by showing how scattering fea-
tures perform on a state-of-the-art spontaneous speech recognition
utilizing DNN acoustic model. We revisit feature normalization and
compression topics in an extensive study, putting emphasis on com-
paring models of the same size. We observe that scattering features
outperform baseline log-mel in all conditions, with additional gains
from multi-resolution processing.

Index Terms— deep scattering networks, deep neural networks,
sequence training criterion, spontaneous speech

1. INTRODUCTION

Contemporary state-of-the-art speech recognition systems often re-
place conventional Gaussian Mixture acoustic Models (GMM) with
Deep artificial Neural Networks (DNN) for their superior perfor-
mance [1]. This work contributes to a search for an optimal speech
representation for DNNs by assessing potential benefits of recently
proposed Deep Scattering Spectra (DSS) [2]. It extends closely re-
lated works on DSS features by Sainath [3] and Peddinti [4] by ad-
vancing from standard Broadcast News recognition task to a very
large vocabulary spontaneous speech task where the acoustic model
is trained under cross-entropy followed by sequence-level objectives.
We revisit some feature normalization and compression experiments
while putting emphasis on comparing models of the same size which
was not done previously.

DNNs have been used in context of acoustic modeling mainly in
two ways. Either to extract discriminative features for conventional
GMMs [5] or to directly substitute GMM acoustic model, produc-
ing observation likelihoods for a decoder [6]. Earlier they had been
used to complement standard cepstral GMM systems rather than to
replace them [7, 8] until the recent boom of Deep Learning initi-
ated by Hinton’s publication of generative pre-training [9, 10]. Our
experience following Seide [11] is that we can conveniently avoid
generative pre-training by growing the DNN layer by layer under
a cross-entropy criterion which we call DNN pre-training. In ad-
dition to DNN, we also considered Convolutional Neural Networks
(CNN) as baseline acoustic models. However, our evidence on the
task presented here suggests that with increasing amounts of data
performance of DNN and CNN models converges to very similar
word error rates. Since DNN is simpler and faster to train, we will
use DNN acoustic model as a baseline.

When trained with multi-style data, DNN acoustic models are
capable of ignoring various sources of variability in the speech that
is considered irrelevant for transcription such as additive and channel
noises, and speaker-related variations. To an extent, this is in contrast
to GMM systems which typically benefit from explicit compensation
and/or normalization techniques reducing the mentioned variabili-
ties. In an empirical search for a good speech representation for a
DNN model we have observed increasing performance when simpli-
fying features from discriminative feature adaptation (feature-level
Minimum Phone Error Transform), from speaker-specific adapta-
tion and even from static linear transform (Discrete Cosine Trans-
form), resulting in logarithm of melodic spectra (log-mel) coeffi-
cients. Some authors consider stepping even further back in the
front-end processing pipeline, for example Sainath lets DNN opti-
mize coefficients of a filter bank [12] but since they are widely used,
in this work we will use log-mel spectra as baseline features.

In the following, we will overview scattering features, emphasiz-
ing why they have a potential to be better than log-mel features and
then we will discuss specifics of modeling scattering features with
DNN and show empirical evidence on a mobile search and messag-
ing task.

2. SCATERING FEATURES

Traditional log-mel features and their linearly transformed counter-
part, MFCC, are inspired by the human auditory system [13]. They
were designed to preserve message-specific content, and to suppress
irrelevant variability. They use short-term Fourier transform on win-
dows in which the signal can be assumed stationary to get a rep-
resentation in the spectral domain, where they drop the phase in-
formation since it is considered not useful for one-channel recogni-
tion. Human perception properties are emulated by taking the loga-
rithm of the power spectrum, and by converting the frequency axis
to a logarithmic scale. However, this processing introduces compro-
mises. Short-term Fourier transform done on speech frames yields
uniform resolution on a linear scale although we ultimately want a
log-scaled axis. The logarithmic warping is achieved by binning the
spectrum by a filter bank which irreversibly discards fine frequency
information mainly on high frequencies. Although this information
might not be necessary for recognition, the time-frequency uncer-
tainty principle suggests we could trade the lost fine frequency in-
formation for a more detailed temporal information, allowing to ac-
curately encode events such as attacks. Standard log-mel pipeline
does not offer this but Deep Scattering Network (DSN) does.

DSN uses wavelet transform to decompose PCM signal x into
frequency bands. By definition, wavelet filters (denoted ψλ1 ) are
uniformly distributed on a logarithmic frequency axis and their im-
pulse reponses shrink for high-frequency filters which allows to sam-
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ple higher frequency bands more densely and thus exploit more in-
formation. To produce frame-based features for DNNs, the filter
bank output modula |x ∗ ψλ1 | are low-passed in time by a filter
φ(t) and sampled uniformly yielding first-order DSS coefficients
S1(x, λ1) but, in contrary to log-mels, the original sub-band mod-
ula can be parameterized again by a second wavelet decomposition,
||x ∗ ψλ1 | ∗ ψλ2 | encoding all details of the temporal structure. The
second-order modula again need to be low-passed φ(t) and sam-
pled to yield sub-band second-order DSS features S2(t, λ1, λ2) but
a recursive application of wavelet decomposition allows to preserve
arbitrary level of detail. First-order coefficients provide informa-
tion similar to log-mels though presumably more robust to local
deformations and second-order coefficients encode sub-band mod-
ulations. Note that sub-bands differ in their respective number of
non-zero second order coefficients due to different bandwidths. It is
good practice to normalize higher order coefficients by the respec-
tive lower order coefficients S2(t, λ1, λ2)/S1(t, λ1) to make them
only depend on the amplitude component of the sub-band signal. For
simplicity we shall denote such normalized coefficients Sn and use
them as DSS features. For more details and formal definition, see
original works by Anden [2] and Bruna [14].

3. SCATTERING FEATURES AND DNN

3.1. Experimental setup

Experiments were conducted on an IBM internal US English cor-
pus called Open Voice Search which collects mobile search queries
and dictated messages. It contains 633 h of manually transcribed
training data (711k utterances) plus 6.6 h of testing data (6k utter-
ances) recorded as 16 kHz speex-compressed audio. Training data is
automatically end-pointed leaving at most 250 ms of silence at the
beginning and end of each utterance. Endpointed utterances have a
mean duration of 3.2 s. For DNN training purposes, we leave 11.5 h
(13K utterances) from the 633 h data aside (“held-out set”) and use it
to monitor training progress and to drive annealing. The main chunk
(622 h) is used for DNN training. For fast-turnaround experiments
we alternatively train on a fixed 125 h that were randomly selected
from the 622 h set. So there are two possible training sets denoted
622-h and 125-h.

A model build starts with a discriminative pre-training where
a DNN is grown layer-by-layer with Stochastic Gradient Descent
(SGD) under cross-entropy criterion (CE) until the final topology is
reached. Each new layer is inserted below a narrow bottle-neck layer
(see below) and SGD is run on all training data (1 epoch). The final
network is then retrained with SGD and CE in 20 epochs. Learning
rate is halved whenever performance on the held-out set ceases to
improve more than by a fixed threshold, measured once per epoch.
The model is ready to be used for decoding or as a starting point for
sequence-level training (ST). ST is based on implementation from
[15], with a Hessian-free (HF) procedure similar to [16]. We use
a modified procedure called Dynamic Stochastic Average Gradient
with HF optimization (DSAG-HF) [17] that displays faster conver-
gence. DSAG-HF splits training data into 6 random subsets and dy-
namically averages gradients after training on each subset. Training
is run to convergence as measured by a Minimum Phone Error loss
on the held-out set.

Performance is measured in terms of Word Error Rate (WER)
which is influenced by a language model so we allow a weight be-
tween acoustic and language-model scores to be tuned on the test
data for minimum WER for each experiment. Another measure is
Phone Error Rate (PER) evaluated on the held-out set which gives

average per-frame DNN classification error.
DNN model is generous in that features can be correlated and

no constraints are imposed on their distributions. Therefore we ap-
pend first and second-order temporal derivatives to log-mel features
and then expand context by stacking ctx+1+ctx successive frames
at the DNN input. Baseline features are 93-dimensional, with 31
log-mels, 31 deltas and 31 double deltas. With ctx=5 this gives
(5+1+5)*93=1023-dim DNN input.

The DNN topology is [I, 5*hidN, B, O] with an Input layer, 5
hidden layers with hidN units in each with sigmoid nonlinearity, a
bottle-neck layer with B=100 units and linear activation, and a soft-
max layer estimating posteriors of O=9000 context-dependent phone
states. Targets were obtained from an existing GMM system. Base-
line topology and number of model parameters are given in Table 1.
DSS features use either the same topology like log-mel except for in-
put size (same-topo) or we adjust hidN so that the overall number of
DNN parameters is roughly constant (same-size). Table 2 illustrates
a trend between performance and the model size on 125-h task.

training set feature dim. hidN # parameters
125-h 93*11 1024 6.2M
622-h 93*11 2048 20M

Table 1. Baseline DNN dimensions and model sizes.

feature dim. hidN PER WER # parameters
S1 + LDA9, Q4 90 1024 44.5 13.2 6.2M
S1 + LDA9, Q4 90 2048 44.3 13.0 20M
S1 + LDA9, Q4 90 4096 44.2 12.9 72M

Table 2. Illustrating performance of DNNs of various sizes. 125-h,
CE training.

DSS features are defined by filter density Q (denoting a target
number of filters per octave), filter type and maximum order of co-
efficients. We commonly use Q=1,4,8,13 and Gabor filters for S1,
and use Q=1 and Mortlett filters for S2 features. Table 3 gives DSS
feature dimensions. S2 can be compressed by projecting onto Lin-
ear Discriminative Analysis (LDA) transform’s bases [3]. A naming
convention for DSS features is “S1 + S2, Q8” for features from Q=8
filter bank, and both S1, S2; “S1 + LDA26, Q8,4” for S1 features
from two filter banks Q=8, Q=4 appended to the 26 first LDA coef-
ficients from concatenated S2 features.

filter density # S1 features # S2 features
Q1 10 36
Q4 27 86
Q8 45 120
Q13 63 148

Table 3. DSS feature dimensions.

3.2. How to present DSS features to a DNN?

Log-mel features are augmented with deltas and double deltas and
presented to a DNN within a 11-frame context covering 165 ms of
the signal. Here we examine whether DSS S1 are better used with
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features dim to DNN PER WER hidN∗

S1 (no delta), Q8 45*11 49.6 (49.5) 13.8 (13.7) 1084
S1 (no delta), Q8 45*15 45.0 (44.9) 13.3 (13.3) 1063
S1, Q8 135*11 44.7 (44.8) 13.3 (13.1) 975
S1 + S2, Q8 255*11 44.9 (45.1) 13.0 (13.3) 848
S1+LDA13, Q8 148*11 44.4 (44.5) 13.2 (13.2) 960

∗ for same-size DNNs

Table 4. Performance of various DSS features with L2-norm. Values
in parentheses are for same-size DNNs. 125-h task, CE training.

or without deltas, and what benefit we get from S2 features or their
LDA-compressed counterparts.

Table 4 suggests that larger context is important, presented either
as deltas or as a wider window of S1 features (experiments on other
data sets favored delta features over larger context so we decided
to retain deltas). S2 features bring an additional gain but as soon
as we penalize the large increase of feature dimension by shrinking
hidN, the gains tend to vanish and a good compromise may be to use
LDA. The number of LDA coefficients is in general chosen to lay at
a knee of WER vs. LDA dimension curve, covering roughly 65% of
data variance which in this case reduces the number of S2 features
from 120 to 13, significantly reducing the feature footprint. It is also
relevant that LDA seems more robust to raw (non L2-normalized)
input signal as shown in section 3.3.

Note that adding S2 features to S1 harms PER while it improves
WER. Our explanation is that S2 features add new information in
a complex form which confuses the low-level DNN classifier but
which imprints into DNN posteriors and is exploited by the subse-
quent strong DNN-HMM model in the decoder. A similar effect was
discussed in [18].

3.3. Feature Normalization

DNN training can fail to converge unless data is normalized to zero
mean and unit variance [19] so we always apply global per-feature
normalization. This suffices since training batches are randomized.
However, speaker-specific or feature utterance-level normaliza-
tion may improve things further. Log-mel features use by default
utterance-level mean normalization (uttMN), and DSS features use
utterance-level L2-norm in audio signal domain (samples xn are

scaled by inverse of
√

1
N

∑
N x

2
n). We evaluate raw, uttMN and

L2-norm variants on both log-mel and DSS. Table 5 shows results
on 125-h, CE model. DSS with LDA-compressed S2 features were
selected because they perform consistently better than DSS S1.

features norm. PER WER
S1 + LDA13, Q8 L2 PCM 44.4 (44.5) 13.2 (13.2)
S1 + LDA13, Q8 raw 44.6 (44.6) 13.3 (13.2)
S1 + LDA13, Q8 uttMN 43.8 (43.9) 13.4 (13.6)
S1 + LDA13, Q8 uttMVN 44.2 (43.9) 13.7 (13.6)
log mel (base) uttMN 46.2 13.7
log mel raw 47.3 13.6
log mel L2 PCM 46.9 13.4

Table 5. Effect of normalizations. Values in parentheses are for
same-size DNNs across rows (DSS has hidN=960). 125-h task, CE
training.

We observe that DSS perform best with L2-norm and we get al-
most no hit from not normalizing. Although best PERs are seen for

feature-level normalizations, WER scores are worse for those. To
our (recent) surprise, log-mel features display similar trend, suggest-
ing that replacing uttMN with L2-norm could significantly improve
the baseline.

Similar experiments with S1 + S2, Q8 features reveal that S2 are
more sensitive to L2-norm, these features give 13.0 (13.3) %WER
for L2-norm but 13.4 (13.5)%WER for raw1.

3.4. Filter Bank Resolution

In [3] we showed that for single filter bank and S1 features, using
more than Q8 (45 filters) was detrimental, with Q8 performing best
among Q=1,4,8,13. Here we repeat the experiment for S1+LDA fea-
tures observing similar trends as shown in Table 6. Note that for raw
signal (no L2-norm) and DSS as well as for log-mel the trends are
similar (not shown here).

features dim PER WER
S1+LDA5, Q1 35 51.1 16.5
S1+LDA9, Q4 90 44.5 13.2
S1+LDA13, Q8 148 44.4 (44.5) 13.2 (13.2)
S1+LDA21, Q13 210 44.8 (44.9) 13.3 (13.3)

Table 6. Effect of filter density of S1+LDA features, L2-norm. Val-
ues in parentheses are for same-size DNNs. 125-h task, CE training.

3.5. Multi-Resolution Features

Multi-resolution feature extraction applies simultaneously multiple
filter banks differing in spectral resolutions in the aim of extracting
different complementary information. Particularly in DSS, denser
filter banks offer better frequency detail while sparser banks can en-
code finer temporal details in higher-order coefficients. The feature
vector is composed of concatenated S1 features from all streams plus
LDA coefficients from merged S2 streams. Log-mel feature extrac-
tion has limited potential in multi-resolution processing, however for
completeness we also consider multi-resolution log-mel features.

Table 7 evaluates all combinations of Q=8,4,1 resolutions. As
feature dimension grows, hidN accordingly shrinks, limiting the
modeling power of same-size DNNs. Despite the penalty, almost all
multi-resolution combinations outperform single-resolution. Inter-
estingly, multi-resolution features seem to suffer more from using
raw signal. As expected, log-mel features do not display significant
gains from multi-resolution processing.

3.6. Results on Full 622-h Set

Selected DSS features were evaluated on the full 622-h task. The
baseline is a state-of-the-art DNN with log-mel features which has
been carefully optimized for the best performance. The baseline
DNN has 2048 hidden units and 20M parameters. Table 8 shows
that on a cross-entropy model, DSS features outperform the baseline
by about 4% relative, and that half of the gains vanish if the sig-
nal is not normalized. After sequence training the gains are smaller,
3% relative. With no normalization we even get no gains from DSS
which suggests that for real-time deployments an online normaliza-
tion technique is necessary.

1Values in parentheses are for same-size DNNs, hidN=848.
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fea dim PER WER hidN∗

log mel (uttMN) 93 46.2 13.7 1024
L2-norm on audio

log mel 93 46.9 13.4 1024
log mel, Q8,4,1 246 46.8 (47.1) 13.3 (13.4) 857
S1+LDA5, Q1 35 51.1 16.5
S1+LDA9, Q4 90 44.5 13.2
S1+LDA13, Q8 148 44.4 (44.5) 13.2 (13.2) 960
S1+LDA11, Q4,1 122 44.5 (44.4) 13.1 (13.0) 990
S1+LDA15, Q8,1 180 44.1 (44.3) 12.8 (13.0) 925
S1+LDA28, Q8,4 244 44.0 (44.2) 12.6 (13.0) 859
S1+LDA26, Q8,4,1 272 43.8 (44.1) 12.7 (12.9) 832

No normalization
log mel 93 47.3 13.6 1024
log mel, Q8,4,1 246 47.2 (47.5) 13.6 (13.7) 857
S1+LDA5, Q1 35 51.5 16.8
S1+LDA9, Q4 90 44.7 13.3
S1+LDA13, Q8 148 44.6 (44.6) 13.3 (13.2) 960
S1+LDA11, Q4,1 122 44.6 (44.6) 13.4 (13.3) 990
S1+LDA15, Q8,1 180 44.5 (44.2) 13.1 (13.1) 925
S1+LDA28, Q8,4 244 44.3 (44.2) 13.0 (13.1) 859
S1+LDA26, Q8,4,1 272 44.2 (44.3) 13.1 (13.1) 832

∗ for same-size DNNs

Table 7.

fea dim PER WER ST WER
log mel (uttMN) 93 39.3 11.5 10.0

L2-norm on audio
S1+LDA26, Q8,4,1 272 39.5 (38.8) 11.2 (11.1) 9.7 (9.7)
S1+LDA15, Q8,1 180 39.1 (39.3) 11.0 (11.2) 9.8 (9.8)

No normalization
S1+LDA26, Q8,4,1 272 39.5 (39.2) 11.3 (11.3) 10.0 (9.9)

Table 8. Results with selected DSS features on the full 622-h task.
WER is shown for Cross-Entropy and Sequence-Trained models.

4. CONCLUSION

DSS features outperformed log-mel features across the board al-
though by a small margin. Normalization was found to be an impor-
tant factor, and it remains to be seen how signal-domain L2 normal-
ization influences the state-of-the-art baseline. Almost no hit in per-
formance was seen when penalizing larger feature vectors by thinner
DNNs with the same number of parameters. DSS can thus be seen
as a safe replacement of log-mel features in DNN systems with no
run-time overhead.
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