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ABSTRACT

This paper investigates data augmentation based on label-preserving
transformations for deep convolutional neural network (CNN)
acoustic modeling to deal with limited training data. We show how
stochastic feature mapping (SFM) can be carried out when training
CNN models with log-Mel features as input and compare it with
vocal tract length perturbation (VTLP). Furthermore, a two-stage
data augmentation scheme with a stacked architecture is proposed to
combine VTLP and SFM as complementary approaches. Improved
performance has been observed in experiments conducted on the
limited language pack (LLP) of Haitian Creole in the IARPA Babel
program.

Index Terms— convolutional neural networks, bottleneck fea-
tures, data augmentation, vocal tract length perturbation, stochastic
feature mapping.

1. INTRODUCTION

Data augmentation based on label-preserving transformations has
been shown to be very effective at improving the robustness of deep
neural networks [1][2][3][4], especially when the training data is
limited. It is commonly used in image recognition where transfor-
mations such as translation, rotation, scaling and reflection [1][4]
have led to significant improvements in recognition accuracy.

Data augmentation in speech-related applications is not a new
practice. For instance, sometimes under the name of multi-style
training [5], artificial noisy speech data is generated by adding noise
to clean speech data for training noise robust acoustic models in au-
tomatic speech recognition (ASR). Another example is IMELDA [6]
where multi-condition transforms are learned from tilted, noisy and
undegraded speech data so that the sensitivity of the transforms to
those conditions is reduced.

When it comes to deep neural network (DNN) or convolutional
neural network (CNN) acoustic modeling, which has achieved the
state-of-the-art performance in ASR nowadays, there is less reported
work on data augmentation algorithms that are specifically designed
to deal with speaker and acoustic variabilities for DNN or CNN
training. Most recently, vocal tract length perturbation (VTLP) was
proposed in [3] for augmenting data in CNN training. Experiments
on the TIMIT database have shown decent improvements in phone
error rate (PER). In [7], data augmentation using stochastic feature
mapping (SFM) was proposed for DNN acoustic modeling. SFM
augments training data by mapping speech features from a source
speaker to a target speaker, which is equivalent to a special type of
voice conversion in some designated feature space.

In this paper, we first show how SFM can be carried out in the
log-Mel domain in CNN training and compare it with VTLP in this
scenario. In addition, we propose a two-stage data augmentation
scheme with a stacked architecture that combines VTLP and SFM

as complementary approaches. In this scheme, a bottleneck CNN
is first trained using data augmented by VTLP as a feature extrac-
tor in the first stage. The extracted bottleneck features are further
normalized by speaker adaptive training. The speaker-adapted bot-
tleneck features (with context) are again employed as input to build
another DNN as the final classifier using data augmented by SFM in
the second stage. Since VTLP and SFM generate data in different
ways, this stacked architecture can make use of the merits of both
approaches.

The remainder of the paper is organized as follows. Section 2
briefly reviews VTLP and SFM for DNN training in the speaker-
adaptive feature space. Section 3 addresses VTLP and SFM for CNN
training with log-Mel features as input. Section 4 gives the details
about the proposed two-stage data augmentation approach that in-
tegrates both VTLP and SFM. Experimental results on limited lan-
guage pack (LLP) of Haitian Creole are presented in Section 5 which
is followed by a discussion in Sections 6 and a summary in Section
7.

2. DATA AUGMENTATION FOR DNNS

VTLP and SFM are investigated in [7] for DNN models in the
speaker adaptive feature space as shown in Fig.1. In this feature
processing pipeline 13-dimensional mean-normalized perceptual
linear prediction (PLP) features with vocal tract length normaliza-
tion (VTLN)[8] are used as the fundamental acoustic features. After
taking into the context (CTX) by splicing adjacent 9 frames, linear
discriminant analysis (LDA) is used to project the feature dimen-
sionality down to 40. The components of LDA features are further
decorrelated by a global semi-tied covariance (STC) matrix [9] and
followed by speaker adaptive training (SAT) using feature space
maximum likelihood linear regression (FMLLR). Finally, 9 frames
(CTX2=±4) of adjacent speaker-adapted features are used as input
to the DNNs. In what follows, we will briefly review how VTLP
and SFM are conducted in this scenario.

FFT Mel Log PLP
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Fig. 1. Speaker adaptive feature space for DNN models.
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2.1. Vocal Tract Length Perturbation (VTLP)

VTLP was first proposed in [3], where for each utterance in the train-
ing set a warping factor α is randomly chosen from [0.9, 1.1] to warp
the Mel-frequency axis to generate a new replica of the original data.
In [7], a modified version of VTLP is used where the warping factor
is perturbed deterministically according to Eq.1

α 7→ {α−4, α−2, α+2, α+4} (1)

Eq.1 follows the notation in the IBM Attila toolkit [10] in
which the vocal tract length warping factor is quantized between
[0.8, 1.25]. As a result, the estimated warping factor α is an integer
between [0, 20] with 10 equivalent to the neutral warping factor 1.0.

According to Eq.1, VTLN warping factor α for a speaker is first
estimated and then perturbed in both positive and negative directions
by small shifts (±2 and ±4) to give 4 more warping factors. The
perturbed warping factors, if beyond [0.8, 1.25], are clipped to 0.8
or 1.25, which corresponds to integer 0 or 20, respectively,

2.2. Stochastic Feature Mapping (SFM)

To conduct SFM, one needs to choose a source speaker, a target
speaker and a desired feature space. A speaker dependent model is
first built for the target speaker. A mapping between the two speak-
ers is then estimated in the chosen feature space based on the feature
sequences from the source speaker and the speaker-dependent model
of the target speaker under a selected statistical criterion.

In [7], SFM is designed with respect to the speaker adaptive fea-
ture space in Fig.1 for DNN models. The LDA space is the fea-
ture space in which the mapping is created. The speaker dependent
model for the target speaker B in the LDA space λ

(B)
LDA is estimated

by model space maximum likelihood linear regression (MLLR) [11].
A linear mapping (FMLLR) between the source and the target speak-
ers is estimated under the maximum likelihood (ML) criterion

{Ã, b̃} = argmax
{A,b}

logP
(
AO(S)

LDA + b|λ(B)
LDA

)
. (2)

After the linear transformation {Ã, b̃} is estimated, the LDA feature
sequence for the target speaker B can be obtained by

O(B)
LDA = ÃO(S)

LDA + b̃ (3)

and the final speaker-adapted feature sequence of the target speaker
can be obtained as

O(B)
FMLLR = A(B)(ÃO(S)

LDA + b̃) + b(B) (4)

where {A(B),b(B)} are speaker adaptive linear transformation (FM-
LLR) in Fig.1 for the target speaker.

To augment the training data, for each speaker in the training set
a number of speakers are randomly chosen from the same training set
as target speakers. All feature sequences of this speaker are mapped
to those target speakers.

3. DATA AUGMENTATION FOR CNNS

CNNs are known to be more invariant to pattern variabilities due
to the normalization effect of convolutions in local receptive fields
and subsequent pooling. For instance, speaker variability caused by
vocal tract differences can be effectively reduced by CNNs. This
property makes CNNs especially attractive when the training data is
sparse.

In this section, we extend our previous data augmentation effort
to CNN acoustic modeling. Since the input to CNNs needs to be
topographical, normalized log-Mel features with context are usually
used where the outputs of the Mel-frequency filter bank after VTLN
are taken the logarithm and their speaker-dependent mean is com-
puted and subtracted. The normalized log-Mel features are spliced
with their left and right 5 adjacent frames to form a feature map.
Two other feature maps are created by computing deltas and double
deltas.

FFT Mel Log Norm

VTLN
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Fig. 2. Normalized log-Mel feature space for CNN models.

Given the normalized log-Mel input features, the extension of
VTLP to CNN is straightforward. Eq.1 can be directly applied.

To apply SFM in the log-Mel feature space, one can still follow
the procedure in Section 2.2 to first build a speaker-dependent model
in the log-Mel feature space and then estimate a linear transforma-
tion in that space to transform the data. However, different from the
speaker-adaptive feature space in the DNN scenario, dimensions of
the log-Mel features, which are the outputs of Mel-frequency filter
bank, are strongly correlated. Since the standard FMLLR estimation
assumes diagonal covariances in GMMs [12], it can not be directly
applied to the log-Mel feature space. One way to cope with this prob-
lem is to diagonalize the log-Mel feature space before estimating the
FMLLR transformation. After the features are transformed in the di-
agonalized space they are transformed back to the original log-Mel
space. The diagonalization is accomplished by a global semi-tied
covariance (STC) transformation [9]. This mapping from the source
speaker S to the target speaker B is indicated in Eq.5:

O(B)
LogMEL = C−1 · F ·C ·O(S)

LogMEL (5)

where C is the STC transformation and C−1 is its inverse. F is
the (augmented) FMLLR transformation in the diagonalized log-Mel
feature space. Note that in order to estimate the FMLLR transforma-
tion in the diagonalized space, the speaker dependent model of the
target speaker λ(B) has to be trained with STC. This diagonalization
approach in Eq.5 has been previously used in speaker normalization
for CNN inputs [13].

4. A TWO-STAGE DATA AUGMENTATION SCHEME

While both VTLP and SFM augment training data based on label-
preserving transformations, they augment in different ways. VTLP
attempts to create “new” speakers by perturbing the vocal tract
length of a speaker, which appears to be especially effective for
systems that use Mel-frequency as their final feature space. SFM
does not create new speakers but by statistically mapping feature
sequences between speakers it can improve acoustic richness in the
training data. Therefore, there is a reason to believe that the two
approaches can be complementary.
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In this section, we propose a two-stage data augmentation
scheme to take advantage of both VTLP and SFM in a stacked
architecture which is illustrated in Fig.3.
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Fig. 3. The stacked architecture that combines VTLP and SFM for
two-stage data augmentation.

In the first stage, a bottleneck CNN is built with mean normal-
ized log-Mel features as input. This CNN is trained with training
data augmented using VTLP. The bottleneck layer is one layer be-
low the last fully connected layer in the network, whose details will
be described in the experimental section. After the bottleneck CNN
is trained, it is used as a feature extractor where the input to the sig-
moid nonlinear activation function of the bottleneck layer is used
as the features. The reason to use the input rather than the output
of the sigmoid nonlinearity is to ensure a good dynamic range of
the features and furthermore the resulting linear features are roughly
normally distributed, which will benefit the speaker adaptive GMM
training later. Since the CNN is trained with VTLP, the features ex-
tracted this way is expected to be more speaker invariant than the
original features.

Upon the extracted bottleneck features, an ML speaker-adaptive
model based on FMLLR is estimated. It has been observed that
speaker adaptation on the bottleneck features helps the stacked bot-
tleneck architecture [14].

In the second stage, a DNN is built whose input is the speaker-
adaptive features coming from the feature space of the speaker-
adaptive model. This DNN is learned with training data augmented
using SFM, through which the acoustic richness of the training data
is further improved.

5. EXPERIMENTAL RESULTS

Experiments are conducted on the IARPA Babel Haitian Creole LLP.
It comprises 23.8 hours of telephony data for the training data set and
20.1 hours of telephony data for the development set. The training
data set consists of scripted and conversational speech while the de-
velopment set consists of conversational speech only. Specifically,
the training set is composed of 19.9 hours of conversational data and
3.9 hours of scripted data. Most of the data is sampled at 8 KHz. A
small portion of the data is originally sampled at 48KHz but down-
sampled to 8KHz for training. Approximately 40%-50% of the audio
is speech.

We will compare the performance of VLTP and SFM under the
DNN and CNN architectures and also the performance of the pro-
posed two-stage data augmentation scheme under the stacked CNN
architecture.

5.1. DNN Experiments

The baseline DNN acoustic model has 5 hidden layers of 1024 hid-
den units with sigmoid activation functions and a softmax output
layer. The input to the network is 9 adjacent frames of 40 dimen-
sional speaker adaptive features. Therefore the total dimensionality
of the input is 360. The network is initialized with layer-wise dis-
criminative pre-training. After the pre-training, it is first optimized
by 15 iterations of cross-entropy (CE) training followed by 30 itera-
tions of Hessian-free (HF) sequence training based on the state-level
minimum Bayes risk (sMBR) criterion [15]. In the case of data aug-
mentation, both VTLP and SFM generate 4 replicas of the original
data, which makes the augmented training data 5 times larger than
the original training data.

model data augmentation CE sMBR

DNN
none 66.9 62.8

VTLPx4 62.2 59.6
SFMx4 62.3 59.1

Table 1. Word error rates (WERs) of DNN baseline and data aug-
mented DNN acoustic models.

Table 1 shows the WERs of the baseline DNN model without
data augmentation and the WERs of the DNN models trained us-
ing VTLP and SFM. After HF sequence training, the WER of the
baseline DNN is 62.8% while the WERs of data augmented DNN
models under VTLP and SFM are 59.6% and 59.1%, respectively.
Both data augmentation techniques improve the ASR performance.
SFM in this case is 0.5% absolute better than VTLP.

5.2. CNN Experiments

The baseline CNN model has two convolutional layers followed by
five fully connected feedforward layers. All hidden layers use sig-
moid activation functions and the output layer is softmax. The input
features to the first convolutional layer are 40-dimensional log-Mel
features with VTLN and their deltas and double deltas. The temporal
context is 11 frames. There are 128 hidden units (feature maps) in
the first convolutional layer, the local receptive field has an overlap-
ping window of 9x9 with a shift of 1 in both temporal and spectral
domains, which results in 32x3 windows for each feature map. On
top of that, max pooling is applied in a 3x1 non-overlapping win-
dow which results in 11x3 windows for each feature map. There are
256 hidden units (feature maps) in the second convolutional layer,
the local receptive field has an overlapping window of 4x3 with a
shift of 1 in both temporal and spectral domains which results in 8x1
windows for each feature map. Following the second convolutional
layer are five fully connected feedforward layers, each containing
1,024 units. The training of the CNN is similar to that of the DNN
described in Section 5.1 which is composed of 15 iterations of CE
training followed by 30 iterations of HF sMBR sequence training.

Table 2 shows the WERs of the baseline CNN model without
data augmentation and the WERs of the CNN models trained us-
ing VTLP and SFM. After HF sequence training, the WER of the
baseline CNN is 61.2% while the WERs of data augmented DNN
models under VTLP and SFM are 58.4% and 58.7%, respectively.
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model data augmentation CE sMBR

CNN
none 64.6 61.2

VTLPx4 61.9 58.4
SFMx4 61.2 58.7

Table 2. Word error rates (WERs) of CNN baseline and data aug-
mented CNN acoustic models.

The CNN baseline model (61.2%) is 1.6% absolute better than the
DNN baseline (62.8%), which indicates that the CNN model is bet-
ter than the DNN model given the sparse training data. Similar to the
DNN scenario, both data augmentation techniques improve the ASR
performance for CNN models. VTLP in this case is 0.3% absolute
better than SFM.

5.3. Two-stage Data Augmentation Experiments

For the proposed two-stage data augmentation scheme, the bottle-
neck CNN has two convolutional layers followed by six fully con-
nected feedforward layers among which the second topmost layer
is a bottleneck layer. Other than the bottleneck layer, all other lay-
ers including both convolutional and fully connected layers have the
same setup as that in Section 5.2. The bottleneck layer consists of
40 hidden units. The training of this bottleneck CNN is composed of
15 iterations of CE training followed by 30 iterations of HF sMBR
sequence training. VTLP is used in the training of this stage where
4 replicas of the original data are generated.

The input to the sigmoid nonlinearity in the bottleneck layer is
chosen as the features for the next stage DNN training. The reason
behind it is that after comparing the performance using the input and
output of the sigmoid nonlinearity of the bottleneck layer we find the
input to the sigmoid has a better dynamic range as features which
benefits the speaker adaptive training in the later stage.

The DNN training in the second stage employs the speaker
adapted bottleneck features as input. There are 2 hidden layers in
the DNN and each layer has 1,024 hidden units with sigmoid non-
linear activation functions. The DNN model is first trained using 15
iterations of CE training then followed by 30 iterations of HF sMBR
sequence training. SFM is applied in this stage together with VTLP.
So a total of 8 replicas of the original data are generated.

model data augmentation CE sMBR
CNN baseline none 64.6 61.2
CNN VTLPx4 61.9 58.4
CNN-bn40 VTLPx4 62.9 59.1
CNN-bn40-fmllr DNN VTLPx4 60.1 58.0
CNN-bn40-fmllr DNN VTLPx4+SFMx4 59.2 57.1

Table 3. Word error rates (WERs) of baseline CNN and CNN/DNN
using two-stage data augmentation.

Table 3 shows the WERs of the baseline CNN model without
data augmentation and the WERs of the stacked architecture that
uses the proposed two-stage data augmentation. The WER of the
CNN baseline is 61.2% and with VTLP it is reduced to 58.4%, which
has already been reported in Table 2. When adding a bottleneck
layer, the WER of the bottleneck CNN model with VTLP is 59.1%
which is 0.7% worse than without using the bottleneck layer. How-
ever, when using the speaker adapted bottleneck features to train the
DNN using SFM on top of VTLP, the final WER is 57.1%. There-
fore, after combining VTLP and SFM using the stacked architec-

ture, this two-stage data augmentation scheme is 1.3% absolute bet-
ter than CNN using VTLP and 1.6% absolute better than CNN using
SFM.

6. DISCUSSION AND RELATION TO PRIOR WORK

VTLP was first reported in [3] being applied to CNN models using
log-Mel input features. In [7], SFM was proposed for DNN models
using speaker adaptive input features. In this work, we first compare
the performance of VTLP and SFM for both DNN and CNN mod-
els. In principle, the label-preserving transformations under VTLP
and SFM for data augmentation are transparent to the models and
only have to do with the input feature spaces. For VTLP, the VTL
perturbation in either the log-Mel feature space or speaker adap-
tive feature space is exactly the same. For SFM, care needs to be
taken when estimating the mapping between the source and the tar-
get speakers using FMLLR in the log-Mel feature space as input for
CNN models. The FMLLR transformation has to be performed in
a covariance-diagonalized feature space given the strong correlation
between the Mel filter bank outputs. The covariance diagonalization
is accomplished by STC in this work.

Furthermore, a novel two-stage data augmentation scheme based
on a stacked CNN architecture is proposed in this work, motivated by
the speculation that VTLP and SFM could be complementary given
their nature on generating label-preserving transformations. The bot-
tleneck CNN trained with VTLP as a feature extractor is expected to
generate features that are more speaker invariant. On top of that, the
DNN model trained with SFM in the speaker adapted bottleneck fea-
ture space can further improve the acoustic richness in the training
data. We find that stage-wise augmentation of the training data using
VTLP and SFM can obtain better performance than VTLP or SFM
alone for augmenting the training data for either DNNs or CNNs.
This two-stage data augmentation scheme so far has yielded the best
performance on Haitian Creole LLP for our systems.

7. SUMMARY

In this paper, we extended our previous work on data augmentation
using SFM from DNN models to CNN models and compared the
performance of VTLP and SFM in both DNN and CNN models. We
proposed a novel two-stage data augmentation scheme based on a
stacked CNN architecture that takes advantage of the complemen-
tary nature of VTLP and SFM. By improving the transformation in-
variance under VTLP and SFM stage-wise, superior performance is
obtained for Haitian Creole LLP.
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