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ABSTRACT
Deep neural networks (DNNs) are widely used for acoustic model-
ing in automatic speech recognition (ASR), since they greatly out-
perform legacy Gaussian mixture model-based systems. However,
the levels of performance achieved by current DNN-based systems
remain far too low in many tasks, e.g. when the training and test-
ing acoustic contexts differ due to ambient noise, reverberation or
speaker variability. Consequently, research on DNN adaptation has
recently attracted much interest. In this paper, we present a novel ap-
proach for the fast adaptation of a DNN-based acoustic model to the
acoustic context. We introduce a context adaptive DNN with one or
several layers depending on external factors that represent the acous-
tic conditions. This is realized by introducing a factorized layer that
uses a different set of parameters to process each class of factors.
The output of the factorized layer is then obtained by weighted aver-
aging over the contribution of the different factor classes, given pos-
teriors over the factor classes. This paper introduces the concept of
context adaptive DNN and describes preliminary experiments with
the TIMIT phoneme recognition task showing consistent improve-
ment with the proposed approach.

Index Terms— Automatic speech recognition, Deep neural net-
works, Acoustic model adaptation, Context adaptive DNN, Factor-
ized DNN

1. INTRODUCTION

Recently, the introduction of deep neural network (DNN) based
acoustic modeling has greatly improved the performance of auto-
matic speech recognition (ASR) for various tasks [1]. However,
there still remains a great performance gap between top perfor-
mances obtained under well-controlled conditions and performances
achieved in the presence of noise, reverberation or speaker mis-
match.

Acoustic model adaptation is usually used to adjust the acoustic
model to the testing conditions. For example, maximum likelihood
linear regression (MLLR) has been shown to be very effective for
speaker or environment adaptation when employing legacy Gaussian
mixture model hidden Markov model (GMM-HMM) based ASR
systems [2]. Research on adaptation for DNN-HMM acoustic mod-
els has attracted a lot of attention [3–18]. However, there is still
no consensus on how to perform efficient adaptation in the con-
text of DNN-based acoustic models. Several approaches for DNN
adaptation have been investigated, including input feature normal-
ization [4–8], direct adaptation of the DNN parameters [9–14, 19]
and the use of rich input features that explicitly characterize acoustic
conditions such as i-vectors or noise features [15–18].

In this paper, we propose a different approach that uses a DNN
whose parameters are directly dependent on factors that characterize
the acoustic context. We refer to this network ascontext adaptive
DNN. Note that here the term context denotes the long-term acous-
tic conditions that are typically defined on an utterance level, e.g.
speakers or acoustic environments. The structure of a context adap-
tive DNN is realized by dividing one or several hidden layers of the
network into a set of parallel sub-layers each associated with a dif-
ferent factor class. By an abuse of terminology, we call such a layer
a factorized layer. The input of a factorized layer is the output acti-
vation of the previous layer as with conventional DNN. The input is
processed with each sub-layer in parallel. The output of the factor-
ized layer is then obtained by theweighted averagingof the output of
each sub-layer, weighted by the posterior probabilities of the factor
classes. During training, the parameters of the factorized layer are
trained in a soft manner, using training data and the associated factor
class posteriors. During testing, a DNN adapted to the test condi-
tions can be obtained given the class posteriors, by the weighted av-
eraging of the parameters of the factorized layer. Consequently, this
makes fast adaptation possible even when there are many parame-
ters to adapt. Moreover, the factors can be estimated blindly during
testing, enabling unsupervised adaptation.

The topology of the proposed context adaptive DNN is similar
to that of networks employed for committee machines, which are
used to combine the outputs of different experts [20, 21]. In particu-
lar, a similar weighted averaging was used for a of mixture of expert
models that employ a gating network to calculate the weights used
to combine the outputs of different experts. An equivalent approach
referred to as disjoint factorized DNN was investigated in relation to
acoustic model adaptation for ASR [22]. A notable difference be-
tween the proposed context adaptive DNN and the approaches pro-
posed in [20–22] is that instead of using a gating network to obtain
the posteriors, we use posteriors calculated externally, which enables
us to represent the long-term acoustic context.

In this paper, we introduce the concept of context adaptive
DNNs and detail our implementation. We also provide preliminary
experimental results for gender adaptation on the TIMIT corpus.
The proposed approach can perform similarly to a gender dependent
system, without using prior knowledge about genders.

The remainder of this paper is as follows. In Section 2, we intro-
duce the proposed context adaptive DNN. Section 3 elaborates on the
relationship between the proposed approach and previous work on
DNN adaptation. We then present preliminary experimental results
using the TIMIT corpus in Section 4. Finally, Section 5 concludes
the paper and discusses future work directions.
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2. CONTEXT ADAPTIVE DNN

2.1. Overview

Before introducing the proposed context adaptive DNN, we first re-
view a conventional DNN to introduce the notations used in this pa-
per. Figure 1-(a) is a schematic diagram of a conventional DNN.
To emphasize the differences between a conventional DNN and the
proposed context adaptive DNN, Fig. 1 explicitly shows the linear
transformation and the activation function associated with each hid-
den layer. We usex(i−1) to denote the input of theith layer of a
DNN, where by definitionx(0) corresponds to the input features or
input layer. The output of theith layer is given by,

x
(i) = σ(z(i)),

z
(i) = W

(i)
x
(i−1) + b

(i)
, (1)

whereW(i) andb(i) are the weight matrix and bias vector of the
linear transformation associated with theith layer, andσ() is the
activation function, which is typically a sigmoid function [23].

The proposed context adaptive DNN replaces one or several lay-
ers of the DNN with factorized layers. A factorized layer is realized
by decomposing the linear transformation of a hidden layer into sub
transformations each associated with a different factor class. Dur-
ing propagation, the parameters of the factorized layer are obtained
as the weighted sum of the parameters associated with each factor
class, weighted by the posterior probabilities of the factor classes.
The parameters associated with theith factorized layer can thus be
expressed as,
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whereW(i)
k andb(i)

k andαk are the weight matrix bias vector
and posterior associated with thekth factor class, respectively, and
K is the number of factor classes considered. By definition, we have
∑

k
αk = 1. {αk}k=1...,K characterize the acoustic context of a

given utterance, which depends on the task, e.g. the gender, speaker
or acoustic environment (noise or reverberation). For example,αk

can be obtained as the posteriors derived from speaker or environ-
ment clustering. In this paper we use context posteriors that are con-
stant across an utterance, but the same formulation could be used for
a context that varies within an utterance.

We can express the output of theith factorized layer by pro-
cessing its input by usingK parallel sub-layers, followed by the
weighted averaging of the outputs of each sub-layer before applying
the activation function, i.e.,
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k
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Although exactly identical to using Eq. (2), this latter interpretation
makes implementation easier if theαk values are allowed to vary on
a frame basis or when training using mini-batches that are random-
ized over acoustic conditions and consequently have a differentαk

per input feature.
Figure 1-(b) is a schematic diagram of a context adaptive DNN

with the ith layer replaced by a factorized layer. Note that in prin-
ciple we could factorize any layer or several layers of the network,
although in the following we will present results obtained when fac-
torizing only a single layer.
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Fig. 1. Schematic diagram of (a) a conventional DNN and (b) the
proposed context adaptive DNN with theith layer replaced by a fac-
torized layer. Note that the dotted boxes are included to emphasize
intermediate steps in the computation of the output of a hidden layer
(i.e. linear transformation and activation function) and are not actual
hidden layers.

2.2. Training procedure

Let us now briefly describe how to train context adaptive DNNs. The
parameters of the factorized layers,Θ , {W(i)

k,b
(i)

k}, can be
obtained with the back-propagation algorithm. The implementation
of the training algorithm requires simple modifications to an existing
DNN training implementation. In particular, the gradients of the
factorized layer parameters are given by,
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whereJ(Θ) is the objective function (typically the cross entropy),
andδ is the back-propagated error that is expressed as,

δ
(i) = ((W(i+1))T δ(i+1))⊙ σ(z(i))′, (5)

where⊙ is the Hadamard product andσ′(z(i)) is the derivative of the
activation function w.r.t.z(i). Equation (4) is similar to the expres-
sion of the gradient for a conventional neural network [24] except
for the introduction of the weighting termαk. Moreover, Eq. (5) is
identical to the expression for a conventional DNN butz

(i) should
be calculated with Eq. (3) andW(i+1) should be calculated with
Eq. (2) if layeri+ 1 is factorized.

There are several training strategies that could be used to train
the proposed context adaptive DNN. One can start from a network
pre-trained for conventional DNN training (e.g. obtained using re-
stricted Boltzmann machine (RBM) pre-training), and create an ini-
tial factorized layer by duplicating the layer corresponding to the
factorized layer by the number of factors. However, we found in our
experiments that better results could be obtained by using awarm-
startapproach, where the initial value for the adaptive DNN consists
of a conventional factor independent DNN trained (i.e. fine-tuned)
with all the training data. The factorized layer was obtained by dupli-
cating the original layer by the number of factors and the remaining
layers are kept unchanged. The network is then retrained using a
small learning rate. Note that all the layers of the network are re-
trained but only the factorized layer becomes context dependent in a
similar way to the approach described in [13].

3. RELATIONSHIP TO PREVIOUS WORK

The proposed context adaptive DNN shares similarities with other
approaches to DNN adaptation. Factorized DNNs were investigated
in [22], where the authors proposed factorizing the last layer of a
DNN by introducing a weight tensor to combine the DNN output and
the factors. Our implementation is especially similar to the disjoint
factorized model proposed in [22]. However, we apply the factor-
ization to the weights and biases of the hidden layers instead of the
softmax layer, which may be more general as it can be extended to
any layer of the network. Moreover, another difference is that in [22]
the same features were used for recognition and for estimating the
speaker and environment factors. In our case, we use factors esti-
mated in a separate process that enables us to use different features
that may be better suited to representing the acoustic context.

The proposed context adaptive DNN is also related to the
speaker adaptive training approach proposed in [13], where a given
DNN layer was made speaker dependent during training, while
maintaining the other layers speaker independent. The speaker
dependent layer was then retrained in a supervised manner using
adaptation data of the corresponding speaker. Our approach uses
posteriors to train the DNN and therefore implements a soft version
of [13]. Moreover, instead of retraining the speaker dependent layer
to adapt the DNN to each test speaker, we use posteriors to compute
the adapted DNN directly. As the posteriors we use can be calcu-
lated blindly on an utterance basis, we can achieve fast unsupervised
adaptation. We could potentially combine the proposed approach
with [13] by using a few adaptation utterances to retrain the context
adaptive DNN to the test conditions.

Another promising approach for fast unsupervised adaptive
DNN consists of using rich features obtained by concatenating the
original input features with additional features representing acous-
tic conditions such as speaker [15], noise [16] or both [17]. Such

approaches are simple to implement and have been shown to be ef-
fective for many tasks [15, 16]. However, they make it necessary to
train a network from scratch for a set of rich features. The proposed
context adaptive DNN employs a different approach for integrating
acoustic condition information. Moreover, a potential advantage of
the proposed approach is that we can use an already trained factor
independent DNN as the initial model, which may speed up the
training.

Finally, [12, 18] proposed including additional features in the
input of intermediate hidden layers [18] or in the last layer [12].
However, these approaches require two passes for adaptation (one
pass to generate labels and one pass to recognize them after adapting
the DNNs), while the proposed context adaptive DNN operates in a
single pass.

4. EXPERIMENTS

In this section we describe preliminary experiments based on the
TIMIT continuous phoneme recognition task [25]. In this prelim-
inary experiment we used two factor classes, which therefore cor-
responds to gender adaptation. Note that TIMIT is probably not
the best corpus with which to demonstrate the potential of the pro-
posed approach as it has already been shown that conventional DNN
based acoustic models could perform speaker normalization on this
task [26]. However we used this task as it enabled us to perform
simple experiments to test our concept.

4.1. Settings

4.1.1. Recognizer configuration

Our baseline system consists of a DNN-HMM recognizer, trained
using all the training data. We refer to this system as a gender in-
dependent DNN (GI-DNN). The DNN consists of 6 hidden layers
with 2048 hidden units per layer and 144 output units. The input
features consist of MFCC features with delta and acceleration (39
dimensions in total). We used the 11 concatenated frames as input
to the DNN (i.e. 429 input units). As is common practice for DNNs,
the input features were normalized using mean and variance normal-
ization parameters calculated using the training data set. The DNNs
were trained with conventional layer-wise pre-training using RBMs
followed by fine tuning using SGD [23, 27]. For the fine tuning, we
used an initial learning rate of 0.1, a momentum of 0.9 and a batch
size of 128. Moreover, the learning rate was gradually decreased
when the frame accuracy would not improve for a validation set (i.e.
here the development set).

In addition to the above GI-DNN, we also trained gender de-
pendent DNNs (GD-DNNs). The GD-DNNs were obtained by re-
training the GI-DNN (warm start) using only male and female data
respectively. Note that we observed that the performance of this re-
training strategy was superior to that of training GD-DNNs created
from scratch. We used the same parameters for retraining as for fine
tuning of GI-DNN except for the learning rate that we set at a smaller
value of 0.001. We also employed the same retraining strategy to
train the proposed context adaptive DNNs.

We used monophone HMMs for all the experiments. For de-
coding, we used a phoneme bigram language model and fixed the
language model weight at 1 in all the experiments. The results are
expressed in terms of the phone error rate (PER) for the development
(dev) and evaluation (eval) sets.
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Table 1. Phone error rate for TIMIT experiment. The results are
shown for the baseline gender independent DNN (GI-DNN), gen-
der dependent DNN (GD-DNN), DNN with rich input features (RF-
DNN) and the proposed context adaptive DNN (CA-DNN). The best
results are highlighted with bold font.

posteriors dev eval
GI-DNN - 22.12 % 22.99 %
GD-DNN - 21.69 % 22.61 %
RF-DNN w/ LDA 21.76 % 22.98 %
RF-DNN w/o LDA 21.88 % 22.84 %
CA-DNN w/ LDA 21.75 % 22.66 %
CA-DNN w/o LDA 21.71 % 22.50 %

4.1.2. Posterior calculation

In this experiment, the posteriorsαk were obtained from the clus-
tering of i-vectors using GMMs [28]. Here, we deal with two fac-
tor classes and therefore the number of Gaussian components for
i-vector clustering was set at 2. The i-vectors consisted of 400 com-
ponents. We used two types of posteriors, one obtained by applying
dimensionality reduction using linear discriminant analysis (LDA)
before clustering the i-vectors (w/ LDA) and one obtained by clus-
tering i-vectors directly (w/o LDA). We used LDA to obtain more
speaker-discriminant vectors. In that case, we reduced the dimen-
sionality of the i-vectors to 4 using an LDA projection matrix esti-
mated by employing the speaker IDs of the training data to define
the classes used by LDA. Note that the posteriors obtained without
LDA are somewhat smoother than those obtained with LDA. The
latter posteriors tend to take binary values. These two types of pos-
teriors were used to confirm the effect of soft training.

4.2. Results

Table 1 shows the PER the baseline GI-DNN and GD-DNN systems,
systems using rich input features (RF-DNN) obtained by concatenat-
ing the input features with posteriors and systems using the proposed
context adaptive DNN (CA-DNN).

The GI-DNNs performance is comparable to that obtained by
others on the same task when using the same input features and net-
work topology [23]. The small performance differences may be due
to minor differences in the training strategy. We observe a small but
consistent improvement with the GD-DNNs. Note that when using
GD-DNNs we assume prior knowledge about gender during decod-
ing. The other systems in Table 1 do not use such prior information.

Table 1 also shows the results for rich features (RF-DNN) ac-
quired by concatenating the input features with posterior probabili-
ties obtained with i-vectors processed with and without LDA. This
is similar in principle to adding i-vectors to the input of DNNs, but
the dimension of the posteriors is smaller than that usually used for
i-vectors. In this experiment, we obtained better performance us-
ing the posteriors than with i-vectors directly. We observed a small
improvement over GI-DNN when using RF-DNN, however the per-
formance did not match that obtained with GD-DNNs.

The last part of Table 1 shows the results of the proposed con-
text adaptive DNN (CA-DNN) for the two different types of pos-
teriors (i.e. ‘w/ LDA’ and ‘w/o LDA’). The results were obtained
when using a single factorized layer. Table 1 shows the results for
the factorized layer that gave the best performance on the develop-

ment set, i.e. the second layer for posteriors with LDA and the third
layer for posteriors without LDA. Note that similar results could be
obtained when factorizing another layer or several layers of the net-
work. However, the performance tended to degrade slightly when the
last layer was factorized. This suggests that some extra layers may
be needed on top of the factorized layer to compensate for perturba-
tions that may occur when the posteriors observed during testing and
training differ.

We observed that CA-DNNs can achieve performance compara-
ble to that of GD-DNNs without using prior knowledge about gen-
der. Both types of posteriors achieve similar performance levels,
but the use of smoother posteriors obtained without LDA provides
slightly better performance than when using LDA or GD-DNNs.
This confirms that the soft training strategy is effective. It is no-
ticeable that we could achieve some performance improvement on
TIMIT although it is known that DNNs can perform speaker nor-
malization on this task [26]. Note that we confirmed that the perfor-
mance improvement is not due to the increased number of CA-DNN
parameters. Indeed, a GI-DNN with 7 layers (which has the same
number of parameters as the CA-DNNs), achieved poorer PERs of
22.17 % and 23.03 % on the development and evaluation sets, re-
spectively. In addition, we also found that increasing the number of
units of a given hidden layer did not improve performance.

We also tested the proposed approach using 4 and 8 factor
classes to extend the experiment to speaker as well as gender classes.
The performance with 4 and 8 classes cases was very similar to that
using 2 classes with a slight degradation with 8 classes. The number
of model parameters increases with the number of factor classes.
Consequently, when increasing the number of classes we may need
more training data to accurately train the parameters of the factorized
layer. In addition, we should investigate approaches to for reducing
the number of parameters of the factorized layers when increasing
the number of classes using e.g. bottleneck layers [11, 29, 30].

5. CONCLUSION

In this paper, we introduced a novel approach for DNN adaptation
that we called context adaptive DNN. The proposed DNN adapts its
model parameters using a set of posteriors that describe the acoustic
context. This enables the rapid unsupervised adaptation of DNNs
even when the number of parameters is large. The proposed con-
text adaptive DNN was tested for gender adaptation on the TIMIT
continuous phoneme recognition task. We observed small but con-
sistent improvements using the proposed method. In particular, we
achieved similar performance to that of gender dependent DNNs.
These are preliminary results for a simple task. We expect to observe
larger gains for tasks with more training data or when dealing with
other acoustic conditions such as noise or reverberation that may be
more difficult to represent by a conventional DNN [19, 31]. These
investigations will constitute part of our future work. We will also
investigate approaches for reducing the number of parameters of the
context adaptive DNN to enable us to perform experiments with a
larger number of factor classes.
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