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ABSTRACT 
 
A large body of research has shown that acoustic features for 
speech recognition can be learned from data using neural networks 
with multiple hidden layers (DNNs) and that these learned features 
are superior to standard features (e.g., MFCCs). However, this 
superiority is usually demonstrated when the data used to learn the 
features is very similar in character to the data used to test 
recognition performance.  An open question is how well these 
learned features generalize to realistic data that is different in 
character to their training data.  The ability of a feature 
representation to generalize to unfamiliar data is a highly desirable 
form of robustness.  In this paper we investigate the robustness of 
two DNN-based feature sets to training/test mismatch using the 
ICSI meeting corpus.  The experiments were performed under 3 
training/test scenarios: (1) matched near-field (2) matched far-field 
and (3) the mismatched condition near-field training with far-field 
testing.  The experiments leverage simulation and a novel sampling 
process that we have developed for diagnostic analysis within the 
HMM-based speech recognition framework.  First, diagnostic 
analysis shows that a DNN-based feature representation that uses 
MFCC inputs (MFCC-DNN) is indeed superior to the 
corresponding MFCC baselines in the two matched scenarios 
where the source of recognition errors are from incorrect model, 
but the DNN-based features and MFCCs have nearly identical and 
poor performance in the mismatched scenario. Second, we show 
that a DNN-based feature representation that uses a more robust 
input, namely power normalized spectrum (PNS) and Gabor filters, 
performs nearly as well as the MFCC-DNN features in the 
matched scenarios and much better than MFCCs and MFCC-
DNNs in the mismatched scenario. 
 
Index terms – deep neural network, acoustic feature, robust speech 
recognition 
 

1. INTRODUCTION 
 
Neural networks have been used successfully for HMM-based 
speech recognition for more than two decades [1]. In that 
approach, network outputs were used as posteriors to derive 
emission probabilities for hidden Markov models (HMMs). Later, 
a number of researchers (e.g., [Hermansky et al.]) made use of 
network outputs as features for HMM observations (tandem) 
[2][3]. Both of these approaches have been used in more recent 
methods that have been designed to effectively incorporate a larger 
number of layers, and in particular have been successfully applied 

to automatic speech recognition (ASR) [4][5][6]. In a typical 
system, cepstral coefficients or short-term spectra are generated as 
input to a (deep) neural network [7][8]. While neural network 
trained features can effectively reduce word error rate (WER) on a 
matched testing set, they might be too specialized to their training 
set. The features would do best when tested on similar material as 
the training, but performance could degrade for a mismatched 
train-test condition. Here, we present a series of analysis 
experiments yielding insight into how the recognition errors are 
distributed in different train-test condition.  
       Unlike most research on neural network focusing on how to 
actually improve speech recognition accuracy [9][10][11] or on 
theoretical asymptotic results [12], we explore the scientific 
questions surrounding how these applications of neural networks 
improve speech recognition accuracy and why it fails for particular 
train-test conditions. In this paper, we first discover the basic 
mechanisms that neural network-based features use to substantially 
improve HMM-based speech recognition accuracy for matched 
near-field or far-field experiments. Second, we investigate the 
failings of MFCC based DNN for the mismatched train-test 
condition. Third, we explored the contribution of robust signal 
processing techniques prior to neural network training. To 
accomplish this, we employed the robust representation [13] that 
incorporated Gabor filtering and power normalized spectrum [14] 
prior to neural network training. The analyses of the improvement 
from DNN features based on this robust representation allow us to 
investigate the contribution of robust feature generation within the 
DNN framework.  
       The primary statistical tool for analysis experiments is a 
version of resampling introduced in [15]. We create pseudo speech 
data by simulation or stringing together samples of real speech 
segments. By manipulating the test data to include or remove 
specific statistical properties, we are able to perform an in-depth 
analysis of the performances in HMM framework.  
 

2. FEATURES 
 

The features explored in this paper are (1) MFCC (2) DNN feature 
based on MFCC input and (3) DNN feature based on robust 
representation (means were normalized per utterance before HMM 
training and testing for all the features in this paper). We are 
primarily focusing on the actual improvement of the two DNN 
features comparing to 39-d MFCC baseline.  
       For MFCC based DNN feature, we exploit a 4-hidden layer 
neural network structure with a bottleneck layer in the 3rd hidden 
layer. The bottleneck size is set to 25 while other hidden layers 
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each consist of 1600 neurons so that total number of parameters is 
about 3M. The network input is 9 successive frames of MFCC. The 
output layer consists of 43 context-independent phonetic targets. 
Restricted Boltzman machine (RBM) pre-training is used to 
initialize the parameters of the neural network. For back 
propagation following the pre-training, we begin with a learning 
rate of .008 and reduced the learning rate by factors of two once 
cross-validation indicated limited progress with each learning rate, 
and continued until cross-validation showed essentially no further 
progress. The final feature is taken from the 25-d bottleneck 
feature augmented with 39-d MFCCs, which is called MFCC-DNN 
in the following sections.  
       To investigate the contribution of robust feature extraction, we 
generate DNN feature based on a robust representation. The robust 
signal processing algorithm is taken from [13]. A general summary 
of how to compute the features is as follows: (1) Compute the 
power normalized spectrogram. (2) Convolve the spectrogram with 
each of the desired 2-dimensional filters. (3) Integrate the filter 
outputs using DNN.  
       We first generate the power normalized spectrum. To enhance 
insensitivity to noise, the power normalized spectrum modifies Mel 
spectrum in three aspects: (1) gammatone filter, (2) medium-
duration bias subtraction and (3) power-law nonlinearity. First, the 
power normalized spectrum employs gammatone auditory filters 
derived from psychophysical observations of the auditory 
periphery instead of Mel filterbank. Second, subtraction of the 
medium-duration power bias is carried out, where the bias level 
calculation is based on the ratio of arithmetic mean and geometric 
mean (AM-GM ratio) of the medium duration power, which is 
motivated by a decrease of the noise power for a decreasing AM-
GM ratio. Finally, a power nonlinearity with an exponent of 0.1 
replaces the logarithm nonlinearity for compression because the 
output of the logarithm would be dominated by noise when the 
intensity of the input signal is low.  
       Power normalized spectrum is then processed by many Gabor 
filters yielding a high dimensional feature vector. To generate 
Gabor filters serving as model for spectro-temporal receptive fields 
(STRFs) [16][17], we multiply a complex sinusoid with a Hanning 
envelope. The complex sinusoid (with time modulation frequency 

 and spectral modulation frequency ) is represented as: 
 

                
            (1) 

while the hanning envelope is given (with  and  denote 
window length) by 
 

h(n,k) = [1
2
(1− cos( 2πn

Wn +1
)][1
2
(1− cos( 2πk

Wk +1
))]            (2) 

 
By tuning parameters of spectral and temporal modulation 
frequency, Gabor functions have different extent and orientation 
for a given number of oscillations under the envelope used in this 
study. The 59 Gabor filters, which emphasize different temporal 
and spectral modulation frequencies, that are used are shown in 
Fig. 1. However, the filters with a large spectral extent result in 
high correlations between frequency channels. Hence, a subset of 
the possible combinations are used to avoid high correlations of 
feature components, resulting in an 814-dimensional feature. The 
feature incorporating the usage of power normalized spectrum and 

Gabor filtering is called PNS-Gabor. Finally, we applied PNS-
Gabor feature as input for DNN training. The neural network 
configure is the same as MFCC-DNN but the hidden layer size is 
reduced to 450 for comparable number of parameters. The 25-d 
bottleneck feature trained from PNS-Gabor is concatenated with 
MFCCs and it is referred as PNS-Gabor DNN in the following 
discussion.  

 
Figure 1. 2-D Gabor filters shown by temporal and spectral 

modulation frequencies 

 
3. SIMULATION AND RESAMPLING METHOD 

 
The diagnostic research described in [15] proposed simulation and 
a novel sampling process to generate pseudo test data that deviate 
from the HMM in a controlled fashion. These processes allow us to 
generate pseudo data that, at one extreme, agree with all of the 
model’s assumptions, and at the other extreme, deviate from the 
model in exactly the way real data do. In between, we can 
precisely control the degree of data/model mismatch. By 
measuring recognition performance on this pseudo test data, we are 
able to quantify the effect of this controlled data/model residual on 
recognition accuracy. In our experiments, we employed the 
diagnostic process on the 4 levels of simulation and resampling: 
(1) simulation, (2) frame-resampling, (3) phone-resampling and (4) 
original test utterance. 

3.1. Simulation 
 
Given the generative property of HMM, we can simulate data 
directly from model where the simulated data matches all the 
assumptions of the model. These assumptions are (1) the 
observations are independent conditioned on the states and (2) the 
output distributions are stationary and can be modeled using 
Gaussian model. The independent assumption is clearly wrong, 
partly because of speech production mechanisms and partly 
because of different ways of feature extraction. For example, 
neural networks compute feature from a temporal context window 
and Gabor filters capture feature over a broad time interval.  
       To generate the test data by simulation, we start with the test 
transcriptions, and look up each word in the pronunciation 
dictionary to create phone transcriptions. We then use the state 
transitions and the output distribution associated with the states 
belonging to the triphones to generate the data.  
 
3.1. Resampling 
 
For frame-resampling, rather than simulating a pseudo frame from 

ωn ωk

s(n,k) = exp[iωn (n− n0 )+ iωk (k − k0 )]

Wn Wk

!
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the Gaussian model, we draw an actual speech frame from an urn 
filled with examples of relevant state. The resampling process is at 
random so that the resampled data respects independence 
assumptions. Specifically, we first use the training model to 
perform forced alignment on the training utterances, so that each 
speech frame is annotated with its most likely generating state.  
Next, we walk through this alignment, filling an urn for each state 
with its representative frames; at the end of this process, each urn 
is populated with frames representing its empirical distribution. To 
generate resampled data, we use the model to create a forced 
alignment of the test data, and then randomly sample a frame (with 
replacement) from the corresponding urn for each frame position. 
With the resampling process, the frames share the output 
distribution of real data instead of Gaussian distribution but satisfy 
the HMM independent assumption. 
       We can extend the idea of frame-resampling to the phone level 
by resampling phones. In the phone-resampling fashion, we place 
entire phone sequence of frames in the urns (the urn labels include 
triphone context), and then resample the concatenated frames of 
phone. Therefore, the phone-resampled data is dependent within 
phone region but independent across phone boundaries. Unlike 
perfect independent data created by simulation or frame-
resampling, phone-resampling creates data partially respecting the 
independent assumption. 

 
3. DATA AND MODEL 

3.1. Data 
 
Our experimental protocol, data, and model training are described 
in [18], which we briefly describe. We used a dataset of 
spontaneous meeting speech recorded at ICSI [19] where each 
spoken utterance was captured using near-field and far-field 
microphones. Our training set is based on the 20 hours of meeting 
data adapted from the SRI-ICSI meeting recognition system [20]. 
For the test set we used 1 hour of ICSI meetings drawn from the 
NIST RT eval sets; this was done to control the variability in the 
data and to avoid dominant speaker for the resampling 
experiments. The statistics of training and testing sets are reported 
in Table 1. 
       While near-field and far-field corpora were recoded in a 
parallel manner, both the time delay of physical distance and the 
systematic delays introduced by the recording software caused 
skew between two recordings. We detected and fixed the skew by 
calculating cross-correlation between two recordings [18]. Thus, 
the near-field and far-field recordings are completely parallel. We 
create alignments using near-field model and near-field data and 
use this alignment to perform all the resampling experiments.  
 

 
Table 1. Training and test statistics for near-field and far-field data  

 
3.2. Model 
 
The acoustic models are cross-word triphones modeled by a three-
state HMM with a discrete linear transition structure (no skipping) 
and one diagonal Gaussian per state. While significantly better 
performance can be achieved with mixture models, the simplicity 
of a single component is preferable for our analysis; it highlights 

the performance differences between our experiments. The 
resulting triphone states are clustered using decision trees to 2500 
tied states.  
       To build a parallel set of near-field and far-field acoustic 
models that shares the same state-tying, far-field models are 
trained using single-pass retraining from the final near-field 
models and the far-field data. Specifically, the E-step is performed 
using the near-field models and data, while the M-step and model 
updates use the far-field data. We use a 10K trigram language 
model [21] that was created from SRI for NIST RT evaluation. The 
perplexity of this meeting room LM is around 70 on our test set. 
186 of 1063 test utterances containing OOV are removed.  
 

4. RESULTS AND DISUSSION 
 
In addition to the original test data, we created near-field and far-
field test data by simulation, resampling frames and phones. The 
corresponding recognition models were used for decoding. All 
simulation/resampling results report the average results of 5 
repeated experiments. The results of matched near-field and far-
field experiments are reported in Table 2 and 3 respectively. The 
experiments of near-field training and far-field testing experiments 
are reported in Table 4. 
        Previous work on MFCC [15][18] with matched training/test 
has shown that recognition errors are dominated by incorrect 
independent assumptions. The observation still holds for deep 
neural network features as shown in Table 2. In particular, WERs 
are extremely low for simulated and frame-resampled data where 
independent assumption is satisfied by data. By comparing MFCC 
to DNN features, we observe that deep neural network trained 
features (both MFCC-DNN and PNS-Gabor DNN) consistently 
outperform MFCC. For simulated data, transforming MFCC with 
deep neural network reduces recognition errors by 73%. The 
improvement decreases as we introduce dependency (at phone-
level). Thus, dependency in real data degrades improvement of 
deep neural network feature in HMM framework. 
       For matched far-field data, deep neural network trained 
features keep providing significant improvement as shown in Table 
3. Thus, acoustic feature can be learned using deep neural 
networks even when training data is noisy. Also, since the 
difference of PNSGB-DNN and MFCC-DNN is negligible, it 
suggests that signal processing techniques prior to neural network 
training didn’t contribute to extra improvement for matched far-
field data.  
       For the mismatched case, we observe that MFCC-DNN and 
MFCC have nearly identical and poor performance. As the 
diagnostic experiments reported in Table 4, recognition errors from 
observation mismatch of MFCC-DNN is more pronounced for 
simulated and frame-resampled data where the WERs are 70.9% 
and 76.9% respectively. For simulated data, applying DNN 
transformation trained from near-field data to far-field data 
increase 65% WER relative to MFCC. The result indicates that 
 

 
Table 2. Results for matched near-field data 

Dataset Speakers Utterances Time
Training 26 23729 20.4 (hrs)

Test 18 1063 57.9 (mins)

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.5 0.4 73% 0.5 67%

frame 2.4 0.7 71% 0.8 67%
phone 28.6 12.7 56% 15.3 47%
original 44.7 33.9 24% 36.5 18%

(2) MFCC-DNN (3) PNS-Gabor DNN
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Table 3. Results for matched far-field data 

observation mismatch is a serious issue for MFCC-DNN. While 
MFCC-DNN is corrupted in the presence of serious mismatch, 
DNN based on PNS-Gabor performs significantly better than 
MFCC or MFCC-DNN for all the experiments in Table 4. For 
simulation, PNS-Gabor DNN reduced 43% WER relative to 
MFCC and 65% relative to MFCC-DNN. The results suggest that 
robust signal processing prior to DNN training is the key step for 
decreasing WER by avoiding specialization and generating more 
invariant features. 
        From our experiments, DNN features can effectively reduce 
recognition errors when training and test sets are matched whether 
they are both clean or both noisy; however, the transformation is 
not generalized enough to apply to realistic data with serious 
mismatch. Thus, robust signal processing is important for deep 
neural network feature extraction. 
 

 
Table 4. Results for mismatched scenario 

       Given the DNN results in mismatched scenario, we are curious 
about the difference of DNN transformations learned from near-
field data and far-field data. It is infeasible to compare the 
parameters of two nets, so we train another net where we initialize 
it using final net trained from near-field data and then train the net 
using far-field data. Thus, the net starts at near-filed data trained 
weights and then eventually adapts to far-field data. The 
experiments allow us to compare the weights moving from near-
field data to far-field data. We conduct the experiments for both 
MFCC and PNS-Gabor input. Applying the adapted nets in the 
mismatched case, WER is reduced from 83.6% to 65.8% for 
MFCC-DNN and from 70.1% to 65.3% for PNS-Gabor DNN. 
Figure 2 shows the initial and the final adapted weights for first 
hidden layer using MFCC (2a) and PNS-Gabor (2b) input where 
each data point consists of two variables: initial weight (X-axis) 
and the final weight (Y-axis). We observe that deviation from 
initial weight is more evident for MFCC input and the deviation for 
PNS-Gabor input is relative small. The root mean square deviation 
between initial weights and final weights for MFCC is 0.25 and 
0.12 for PNS-Gabor input. Thus, the net based on PNS-Gabor is 
more invariant for different data. In particular, Figure 3 shows the 
initial and final weights learned by two hidden nodes of the first 
hidden layer for 9 frames of a MFCC (C1) and a PNS-Gabor input. 
The examples illustrate greater insensitivity to different data for the 
DNN transformation using PNS-Gabor input. Similar characteristic 
can be observed for the following layers in our experiments.  As  

 
Figure 2. Initial weights and final weights of first hidden layer for 

MFCC input (a) and PNS-Gabor input (b) 

 

 
Figure 3.  Initial weight (black line) and final weight (red dashed 
line) learned from 2 hidden nodes for 9 frames of a MFCC (C1) 
(above: (a) and (b)) and a PNS-Gabor input (below: (c) and (d)) 

both the PNS-Gabor input and the following neural network 
transformation is more invariant, it explains the reason that PSN-
Gabor DNN is better than MFCC-DNN in mismatched scenario. 
 

12. CONCLUSION 
 
In this paper, we exploited the method of simulation and 
resampling to investigate the success and failings of deep neural 
network features in different train/test scenarios. Diagnosis shows 
that DNN-based feature representation is indeed superior to the 
corresponding MFCC in both two matched scenarios where the 
incorrect independent assumption of HMM dominates recognition 
errors. However, evidence from simulation and resampling 
experiments reveals that MFCC-DNN feature is easily specialized 
to training data and the observation mismatch dominates the source 
of recognition errors in mismatched scenario. On the other hand, 
DNN-based feature that uses PNS-Gabor, performs nearly identical 
as MFCC-DNN features in the matched scenarios and much better 
than MFCCs and MFCC-DNNs in mismatched scenario. Thus, 
modeling and robustness are the key steps to improve ASR 
performance using deep neural network.  
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resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.8 0.5 72% 0.5 72%

frame 3.4 1.2 65% 1 71%
phone 45.5 33.5 26% 33.1 27%
original 71.4 62.8 12% 62.9 12%

(2) MFCC-DNN (3) PNS-Gabor DNN

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 43.0 70.9 -65% 24.5 43%

frame 59.9 76.9 -28% 43.4 28%
phone 80.6 80.8 0% 55.9 31%
original 84.7 83.6 1% 70.1 17%

(2) MFCC-DNN (3) PNS-Gabor DNN
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