
A NOVEL STATIC PARAMETER CALCULATION METHOD FOR MODEL COMPENSATION

Suliang Bu1 Yunxin Zhao1 Yanmin Qian2 Kai Yu2

1 Department of Computer Science, University of Missouri-Columbia, USA
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University
sbkc6@mail.missouri.edu, ZhaoY@missouri.edu, {yanminqian,kai.yu}@sjtu.edu.cn

ABSTRACT

Vector Taylor Series (VTS) based model compensation ap-
proach has been successfully applied to various robust speech
recognition tasks. In this paper, we propose a novel method
of variable transformation to calculate the static statistics. In
addition, we provide a detailed explanation of VTS and ran-
dom variable transformations adopted in some recent papers.
Experiments on Aurora 4 showed that the proposed approach
obtained 22.8% relative WER reduction over the traditional
first-order VTS methods.

Index Terms— robust speech recognition, model com-
pensation approach, Vector Taylor Series

1. INTRODUCTION

It is known that the performance of an automatic speech
recognition (ASR) system degrades greatly when noise is
present and the system is trained with only clean speech. Two
approaches are commonly used to deal with noise under the
GMM-HMM framework. One is called feature enhancement,
which aims to remove the noise effect in test utterances so
that the processed data could better match the clean models.
The other is called model compensation, which adapts the
original models to the noisy conditions in test utterances.

In both approaches, the first-order vector Taylor series
(fVTS) based methods [1, 2, 3] are widely used because they
are simple and effectiveness. However, relatively large resid-
ual errors might be caused by such a simple approximation.
For the second-order VTS (sVTS) or even higher orders [4],
the resulting formulae would be very complicated if the con-
ventioanl way is followed. In fact, high-order Taylor series of
a function with more than one variable would become com-
plex, let alone the fact that here the number of variables is way
more than one. To solve this difficulty, recently [5] proposed
a transformation of random variables, which could greatly re-
duce the complexity of sVTS. Though the method is quite ef-
fective, further experiments suggested that this method might
reach a bottleneck. Here we adopt a new way for variable
transformation to improve the performance. To help readers
gain a better understanding of VTS and variable transforma-
tions adopted here and in [5, 6], we also provide a detailed

explanation on these issues in this paper.
This paper is organized as follows. Section 2 describes

the formulation for static and dynamic statistics. A detailed
explanation of VTS and the random variable transformations
involved is provided in section 3. Experiment results on au-
rora 4 are analyzed in section 4, and finally we conclude in
section 5.

2. MODEL COMPENSATION APPROACH

In this study, only the effect of additive noise is considered,
and the channel distortion is ignored.

2.1. Static Statistics

2.1.1. A Novel Formula for Calculating Static Statistics

In the static cepstral domain, the nonlinear effect of additive
noise can be expressed as:

ys = xs + C · ln
(
1 + eC−1(ns−xs)

)
(1)

where ys, xs and ns are static features corresponding to noisy
speech, clean speech and additive noise, respectively; C is the
truncated discrete cosine transform (DCT) matrix and C−1 is
its pseudo inverse. The subscript “s” indicates static parame-
ters. Here xs and ns are assumed to have independent Gaus-
sian distributions with mean µxs, µns and covariance Σxs,
Σns, respectively.
Next, we use zs to denote C−1(ns − xs), since 1) each com-
ponent of xs and ns is Gaussian distributed, 2) all these vector
components are assumed to be mutually independent and 3)
C−1 is a linear transformation, and so zs is also Gaussian dis-
tributed. Please note that components in zs are not mutually
independent. The mean and covariance for zs are given by

µzs = C−1(µns − µxs) (2)

Σzs = C−1(Σns + Σxs)(C
−1)T (3)

Further, we view ezs as a new random variable w, whose
mean and covariance are given by

µw = exp
(
µzs + diag−1(Σzs)/2

)
(4)

Σw =
[
µw (µw)

T
]
� [exp (Σzs)− 1] (5)

4510978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

where diag−1(·) extracts the diagonal elements of a matrix as
a column vector and � denotes element-wise multiplication.
Now taking expectation of the noisy speech, we have:

E [ys] = E [xs] + C · E [ln (1 + w)] (6)

The first-order VTS expansion of ln(1 + w) around µw is

ln(1 + w) ≈ f (0) + f (1) � (w − µw) (7)

where f (0) = ln(1 + µw) and f (1) = 1
1+µw

. By com-
puting the expectation of Eq. (6), we have

µys ≈ µxs + C · f (0) (8)

As for the static covariance, it can be calculated by

Σys ≈ E(ys − µys)(ys − µys)
T

= Σxs −K2 −K2
T + C · [Σw � F1] ·CT

(9)

where

K1 =
[
diag−1(Σxs) · µTw

]
� (C−1)T (10)

K2 = K1 · diag(f (1)) ·CT (11)

F1 = f (1)
(

f (1)
)T

(12)

and diag(·) gets a diagonal matrix from a column vector.

2.2. Dynamic Statistics

2.2.1. Theoretical Analysis

We use the subscript “∆” and “∆∆” to denote delta and delta
delta statistics, respectively. To compute dynamic statistics,
continuous time (CT) approximation [7] was used. Different
from previous methods [1, 2, 8], here we directly take deriva-
tive of ys with respect to time to derive dynamic mismatch
functions without any further approximation:

∂ys

∂t
=
∂xs

∂t
+ C ·

(
ezs

1 + ezs
� ∂zs

∂t

)
(13)

For the sake of convenience, let’s first define some notations:

L1 = E

[
ezs

1 + ezs

]
= E

[
1

1 + e−zs

]
(14)

L2 = E

[
ezs

(1 + ezs)2

]
= E

[
1

ezs + 2 + e−zs

]
(15)

L11 = E

[
ezs

1 + ezs

] [
ezs

1 + ezs

]T
(16)

L22 = E

[
ezs

(1 + ezs)2

] [
ezs

(1 + ezs)2

]T
(17)

L21 = E

[
ezs

(1 + ezs)2

] [
ezs

1 + ezs

]T
(18)

Assume ∂ns

∂t and ns are independent (similarly for speech).
Since C−1 is a linear transformation, it is easy to prove ∂zs

∂t
and zs are independent. Taking expectation of Eq.(13) gives:

µy∆ = µx∆ + C ·
(
E

[
ezs

1 + ezs

]
� E

[
∂zs

∂t

])
= µx∆ + C · (L1 � µz∆)

(19)

As for the delta covariance, it can be computed by:

Σy∆ = Σx∆ −K3 −K3
T + C · [Σz∆ � L11] ·CT

+ C ·
[(

L11 − L1 (L1)
T
)
�
(
µz∆(µz∆)

T
)]
·CT

(20)

where µz∆, Σz∆ can be computed like Eq. (2), (3), and

K3 = Σx∆(C−1)T · diag (L1) ·CT (21)

Similarly, the delta delta statistics can be computed by:

µy∆∆ = µx∆∆ + C · (L1 � µz∆∆ + L2 �K4) (22)

Σy∆∆ =Σx∆∆−K5−K5
T +C

(
K6+K7+K7

T
)
CT

+ C [Σz∆∆ � L11 + K8] CT
(23)

where
K4 = diag−1(Σz∆) + µz∆ � µz∆ (24)

K5 = Σx∆∆

(
C−1

)T · diag (L1) ·CT (25)

K6 = Σz∆ �
(

2Σz∆ + 4µz∆(µz∆)
T
)
� L22

+
[
L22 − L2(L2)T

]
�
[
K4(K4)T

] (26)

K7 =
[
L21 − L2(L1)T

]
�
[
K4(µz∆∆)T

]
(27)

K8 =
[
L11 − L1(L1)T

]
�
[
µz∆∆(µz∆∆)T

]
(28)

2.2.2. Formulae for Calculating Dynamic Statistics

To calculate the dynamic statistics, we need to know the val-
ues of L1, L2, L11, L21, L22. In order to get a compact
formula, we make the same approximation as in [6]:

L1 ≈
1

E [1 + e−zs]
L2 ≈

1

E [ezs + 2 + e−zs]
(29)

L11 ≈ L1 (L1)
T

L22 ≈ L2 (L2)
T

L21 ≈ L2 (L1)
T (30)

For a Gaussian variable x with mean µ and variance σ2,
E [ex] = exp(µ + σ2/2), which makes it easy to derive the
formulae for L1 and L2. With all these above, the formulae
for calculating the dynamic statistics become available:

Σy∆ ≈ Σx∆ −K3 −K3
T + C [Σz∆ � L11] CT (31)

Σy∆∆≈Σx∆∆−K5−K5
T + C [Σz∆∆ � L11] CT

+C
[
Σz∆ �

(
2Σz∆ + 4µz∆(µz∆)

T
)
� L22

]
CT

(32)

To do model compensation, noise parameters are needed. In
this paper, noise is modeled by a single Gaussian. Usually,
the noise parameters are iteratively estimated using EM-like

4511

algorithms. However, in this study noise parameters are es-
timated by using the first and the last 20 frames of each test
utterance [3]. When a high-order VTS is used, it is not easy
to directly derive the formula for re-estimation, even for the
mean. We plan to provide a noise re-estimation algorithm for
high order VTS as well as the new method of this paper in a
future work.

In practice, when noise is relatively stationary, µn∆ and
µn∆∆ are set to be zero, and covariance matrices are usually
diagonalized for computational convenience.

3. FURTHER UNDERSTANDING OF VTS AND
VARIABLE TRANSFORMATIONS

Here we discuss several issues of VTS and the random vari-
able transformations involved in our method to help readers
better understand both VTS and our method.
3.1 Variable transformations in [5, 6] and this paper

There are following advantages using the transformation
zs = C−1(ns − xs):

1) Avoid huge memory overhead and complicated formu-
lae when sVTS (or even higher order) is used

Traditionally, we expand function (1) around two vector
variables. In this way, we need a Hessian matrix for each
component function if sVTS is used to calculate static statis-
tics. Since static feature is often 13 in dimensionality, the size
of each Hessian matrix would be (13+13)*(13+13). If the
DCT matrix is 13*d by size, then we need d*26*26 storage
space for the whole vector function. But if the transforma-
tion zs = C−1(ns − xs) is used, a mere “d” sized vector
is enough, which is only 1/(26*26) of the previous space us-
age. Besides, with some tricks, the resulting formulae become
rather compact.

Please note that the major difficulty and computation re-
duction actually do not happen in static part, but in dynamic
part. If we derive dynamic formulae using CT approximation
in the traditional way, the resulting formulae would be very
complex, which would also cause troubles in implementation.

2) Extend easily to higher order VTS
Using the traditional method, it is very difficult to derive

the analytic formulae for both static and dynamic parts based
on the third order VTS (tVTS). To get the third order accuracy
for the static part, previously unscented transform (UT) [9,
10, 11] was used. In fact, UT will introduce some additional
terms, thus it does not return the same value as tVTS. Be-
sides, traditional tVTS dynamic formulae are too complex to
derive. In contrast, this transformation zs = C−1(ns − xs)
would make it much easier to derive both static and dynamic
formulae for tVTS, as well as for other order VTS (though
not provided in this paper due to our space constraint).

3) Provide a way to observe covariance structure
The covariance of zs is calculated by Eq.(3). Considering

that the pseudo inverse onC is not accurate, we might want to
know how this covariance differs from the one if real inverse

is used. In [6] we have an interesting finding about the differ-
ence, which could be used to largely improve performance.

3.2 Why sVTS is better than fVTS
The reason is usually attributed to the reduced residual

error when sVTS is used. Strictly speaking, it is not entirely
true. For example, let’s calculate the expectationE[ln(1+x)],
where “x” is a positive random variable with mean 1 and vari-
ance 8. Since “x” is positive, the expectation should be pos-
itive. But if we use sVTS, we would have E [ln (1 + x)] =

ln (1 + µ)− 1
2

σ2

(1+µ)2
= ln2− 1 < 0. Thus the result would

be worse than fVTS : ln(1+µ). That a Taylor series does not
converge to its original function is sometimes used to explain
this kind of situation. But even if the series converges, higher
order VTS could still be worse than lower order unless suf-
ficiently many terms are included. Therefore sVTS does not
always get better results than fVTS.

Then why sVTS is better than fVTS in model compen-
sation as shown in [5]? Strictly speaking, the reason is that
given a certain dataset where noise is relatively stationary and
SNR is relatively high, for most dimensions of most multi-
variate Gaussian components of GMM, sVTS returns more
accurate value than fVTS does (In fact, as SNR tends to 0, the
noisy speech tends to have two modes, which makes the as-
sumption of model compensation — the noisy speech is still
Gaussian distributed — rather problematic, hence both fVTS
and sVTS would suffer. Non-stationary noise would cause
other problems.)

3.3 Why not use a second order expansion in this paper?
If a second order expansion is used, then terms such as

E[xs(w
2)T] and E[(w − µw)2((w − µw)2)T] are needed,

which are more difficult to derive. (We used second order in
[5] because the Gaussian variable “zs” is much easier to han-
dle even if a high order is used. But here “w” is not Gaussian
distributed.) Besides, second order is not necessarily better.

3.4 How about viewing 1 + w as a new variable v?
When zs is used, mathematical convenience and better re-

sults are got, and here we propose using ezs as a variable w. It
is meaningless to push for 1 + w because 1) it does not offer
any new insights on some otherwise hidden structure, 2) we
still need to expand vn with the binomial formula (1 + w)

n

to compute terms like E[xs(v
n)T]. Such a transform there-

fore does not offer any advantage over the“w” here.

3.5 VTS order beyond the second order is not preferred
Firstly, formulae of higher order VTS would be difficult

to derive and check, and the resulting complex formulae will
make implementation harder. (Overly complex formulae are
not welcome since ASR is a practical problem, not totally
mathematics. There could always be unseen factors unat-
tended, making complex formulae not that accurate.) Sec-
ondly, as we said before, mathematically, a higher order is not
necessarily better than a lower order. Even if sVTS makes an
improvement over fVTS, it does not necessarily mean tVTS

4512

(or higher) would be better than sVTS. Thirdly, more time
will be needed on higher-order model compensations.

4. EXPERIMENTS AND RESULTS

4.1. Experiment Setup

To evaluate the proposed method, we conducted a series of
experiments on Aurora 4, which was based on the Wall Street
Journal 5k-vocabulary database. In this study, speech models
were trained on clean data, which comprised 7138 utterances,
and decision tree state clustering was used to get about 3000
tied triphone states. Since we only considers additive noise,
the experiments were conducted on the test set B of Aurora
4 corpus, which was recorded using the same microphone as
did in the training data. Therefore, channel distortion could be
omitted. Six different noises at various SNRs were artificially
added to turn original clean data into the noisy database. Each
noise condition had 330 test utterances from 8 speakers, and
only 16kHz testing data were used for evaluation. We used 12
MFCCs and C0 as well as the delta and delta-delta features.
HTK [12] was used to build the system, in which bigram lan-
guage model was adopted. Each speech state was represented
by 16 Gaussian components while 32 Gaussian components
were used for the silence state model. All experiment settings
were the same for all noise conditions.

4.2. Experiment Results

In the following experiments, we first construct the GMM-
HMM baseline and present the results in Table 1.

clean car babble rest. street airport train avg
6.8 37.0 55.2 54.4 64.2 48.7 64.0 53.9

Table 1. WER (%) of the baseline on test B using clean model

We next compare the following four methods in Table 2:
1, 2) both static and dynamic statistics are computed using
fVTS [2] or sVTS [5], respectively; 3) the method proposed
in [6], denoted as “SIMP”; 4) the method proposed in this
paper, denoted as “logN” since w is log-normal distributed.

car babble rest. street airport train avg
fVTS 14.9 21.4 28.3 24.2 22.2 25.6 22.8
sVTS 11.5 18.4 23.9 20.7 18.6 21.4 19.1
SIMP 11.7 17.8 22.4 20.2 18.0 20.9 18.5
logN 11.1 17.5 20.8 19.3 15.5 21.1 17.6

Table 2. WER (%) of four methods on test B

Comparing fVTS with sVTS, we can see sVTS indeed im-
proves the performance. The only difference between sVTS
and SIMP lies in the calculation of dynamic statistics. Al-
though both are based on CT approximation, the former’s

dynamic mismatch functions are derived with an additional
sVTS approximation while the latter does not. The above re-
sults seem to prefer SIMP, which differs from logN in calcu-
lating the static part: SIMP uses the same way as sVTS, while
logN adopts a new transformation. Since logN behaves the
best, this new way of calculating the static part seems better.

Next, we consider the method of modifying Σzs, which
is introduced in section 3 of [6] to see how would the pseudo
inverse of the unsquare DCT matrix influence the covariance
Σzs. After all, if a square DCT matrix is really used, there is
no need to fuss about Σzs. Relying on MATLAB simulations,
we find that the diagonal elements of Σzs tend to be smaller
than the ones obtained from using a full DCT inverse. To
compensate for the smaller diagonal elements, a variable α 1

is introduced in this method. In the following experiment, α
is assigned 0.1 to calculate new Σzs.

car babble rest. street airport train avg
fVTS 14.3 20.7 26.5 23.2 20.9 24.6 21.7
sVTS 11.4 18.2 23.2 20.5 17.5 21.8 18.8
SIMP 11.5 17.4 21.7 19.5 16.7 20.1 17.8
logN 11.1 17.2 20.3 19.5 15.4 21.7 17.5

Table 3. WER (%) of four methods on test B: α = 0.1 was
used in modifying Σzs

Comparing Table 3 with Table 2, we can see that intro-
ducing α indeed improves the average performance for each
of the four methods. However, for some conditions, perfor-
mance might decrease. On the other hand, it seems that such
modification does not work for logN: only a minor improve-
ment is observed. In fact, if we set α to be 0.2, the perfor-
mance of all the other three methods gets further improved
whereas logN decreases. One possible reason is that the way
logN calculates the static part somehow overlaps the effects
of the modification on Σzs. A further analysis is needed here.

5. CONCLUSION

We have introduced a novel method for random variable
transformation to calculated the static statistics. We have
given a detailed clarification on the random variable trans-
formations used in this paper and [5, 6], which explains why
such transformations are preferred. We have also explained
why sVTS is better than fVTS, which might be easily misun-
derstood. In our experiment, we have unexpectedly found that
the modification on Σzs does not seem to benefit the logN
method, which requires a futher analysis. Finally, experi-
ments on Aurora 4 have showed that our proposed method
obtained a 22.8% relative WER reduction over the widely
used first-order VTS approach.

1When α is considered, we need formulae which explicitly contain Σzs

otherwise we can not use this method. The new fVTS formulae can be easily
inferred from sections 2 and 3 in [5].

4513

6. REFERENCES

[1] Pedro J Moreno, Bhiksha Raj, and Richard M Stern,
“A vector taylor series approach for environment-
independent speech recognition,” in ICASSP, 1996, pp.
733–736.

[2] Alex Acero, Li Deng, Trausti T Kristjansson, and Jerry
Zhang, “Hmm adaptation using vector taylor series for
noisy speech recognition.,” in INTERSPEECH, 2000,
pp. 869–872.

[3] Jinyu Li, Li Deng, Dong Yu, Yifan Gong, and Alex
Acero, “A unified framework of hmm adaptation with
joint compensation of additive and convolutive distor-
tions,” Computer Speech & Language, pp. 389–405,
2009.

[4] Jun Du and Qiang Huo, “A feature compensation ap-
proach using high-order vector taylor series approxi-
mation of an explicit distortion model for noisy speech
recognition,” IEEE Transactions on Audio, Speech, and
Language Processing, pp. 2285–2293, 2011.

[5] Suliang Bu, Yanmin Qian, Khe Chai Sim, Yongbin You,
and Kai Yu, “Second order vector taylor series based
robust speech recognition,” in ICASSP, 2014, pp. 1769–
1773.

[6] Suliang Bu, Yanmin Qian, and Kai Yu, “A novel dy-
namic parameters calculation approach for model com-
pensation,” in INTERSPEECH, 2014.

[7] P. S. Gopalakrishnan S. Balakrishnan-Aiyer
R. A. Gopinath, M. J. F. Gales and M. A. Picheny,
“Robust speech recognition in noise - performance of
the IBM continuous speech recognizer on the ARPA
noise spoke task,” in ARPA Workshop on Spoken
Language System Technology, 1995, pp. 127–130.

[8] Ozlem Kalinli, Michael L Seltzer, and Alex Acero,
“Noise adaptive training using a vector taylor series ap-
proach for noise robust automatic speech recognition,”
in ICASSP, 2009, pp. 3825–3828.

[9] Simon J Julier and Jeffrey K Uhlmann, “Unscented fil-
tering and nonlinear estimation,” Proceedings of the
IEEE, pp. 401–422, 2004.

[10] Jinyu Li, Dong Yu, Yifan Gong, and Li Deng, “Un-
scented transform with online distortion estimation for
hmm adaptation.,” in INTERSPEECH, 2010, pp. 1660–
1663.

[11] Yu Hu and Qiang Huo, “An hmm compensation ap-
proach using unscented transformation for noisy speech
recognition,” in Chinese Spoken Language Processing,
pp. 346–357. 2006.

[12] Steve Young, Gunnar Evermann, Dan Kershaw, Gareth
Moore, Julian Odell, Dave Ollason, Valtcho Valtchev,
and Phil Woodland, “The htk book,” 2002.

4514

