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ABSTRACT

Many voice activity detection (VAD) systems use the magnitude of
complex-valued spectral representations. However, using only the
magnitude often does not fully characterize the statistical behavior of
the complex values. We present two novel methods for performing
VAD on single- and dual-channel audio that do completely account
for the second-order statistical behavior of complex data. Our meth-
ods exploit the second-order noncircularity (also known as impropri-
ety) of complex subbands of speech and noise. Since speech tends
to be more improper than noise, higher impropriety suggests speech
activity. Our single-channel method is blind in the sense that it is
unsupervised and, unlike many VAD systems, does not rely on non-
speech periods for noise parameter estimation. Our methods achieve
improved performance over other state-of-the-art magnitude-based
VADs on the QUT-NOISE-TIMIT corpus, which indicates that im-
propriety is a compelling new feature for voice activity detection.

Index Terms— Voice activity detection, spectral impropriety,
complex-valued data, second-order statistics

1. INTRODUCTION

Voice activity detection (VAD) consists of classifying short periods
of a noisy speech signal as either noise-only or speech-plus-noise.
VAD algorithms serve an important role in many speech process-
ing applications, including enhancement, separation, and automatic
speech recognition.

A great variety of VAD systems has been proposed. These
systems cover a wide range, from unsupervised [1, 2, 3], to semi-
supervised [4], to supervised [5, 6, 7]. Various properties of speech
signals are used, including long-term spectral envelopes [2], Mel-
frequency cepstral coefficients (MFCCs) [5, 3], the magnitude-
squared of short-time Fourier transforms (STFTs) [1, 2] and other
time-frequency representations, and time-domain features such as
zero-crossing rate [8]. For two-channel data, spatial properties have
also been exploited [9, 10]. Many VAD systems that use complex
spectral representations share a common feature: they only use the
magnitude (or magnitude-squared) of the complex values. How-
ever, recent work [11, 12, 13] on the statistics of complex data has
shown that using only the magnitude-squared statistic of complex
random data does not fully characterize the data’s second-order sta-
tistical behavior. If the complex data is second-order noncircular,
or improper, then computing an additional second-order statistic,
the complementary covariance, can provide improved estimation
algorithms and new blind source separation procedures [14].

All speech processing approaches that use only the magnitude
(-squared) of complex speech spectra make an implicit assumption
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that the complex values are second-order circular, or proper. How-
ever, recent work [15, 16] has shown that complex-valued subbands
of speech tend to be highly improper, especially in subbands that
contain a narrowband harmonic of voiced speech or speech onsets
and offsets. Impropriety in the frequency domain is also closely
related to the modulation frequency content of signals, which can
correspond to syllabic rates of speech [17, 18]. Furthermore, we re-
cently showed promising initial results [19] using impropriety for
speech processing. Here, we more extensively explore the useful-
ness of impropriety for VAD.

In this paper, we propose two VAD systems that account for the
impropriety of subbands of noisy speech. We show that our systems
are robust to realistic additive noise and mild reverberation condi-
tions, achieving equivalent or superior performance over other state-
of-the-art methods that only use the magnitude (-squared) of com-
plex STFTs. Thus, we show that impropriety is a promising new
feature for voice activity detection.

2. BACKGROUND

2.1. Second-order statistics of complex-valued data

There has been a recent interest in improved processing of complex-
valued signals [11, 12, 13]. For example, an additional second-
order statistic, the complementary (or pseudo-) covariance, of a zero-
mean, complex-valued random variable x can be computed: R̃xx =
E[x2], where E is the expected value. This statistic is complemen-
tary to the conventional Hermitian covariance, Rxx = E

[
|x|2
]
.

When the complementary covariance is zero, the random variable
is said to be proper. When Rxx 6= 0, a normalized circularity coef-
ficient (CC) can be defined as kx =

∣∣∣R̃xx∣∣∣ /Rxx, with the property
that 0 ≤ kx ≤ 1. When kx = 0, x is proper, and when kx = 1,
x is maximally improper, or rectilinear. Given M samples of x, the
sample statistic for kx is

k̂x =

∣∣∣ ˆ̃Rxx∣∣∣
R̂xx

=

∣∣∣ 1
M

∑M−1
m=0 x(m)x(m)

∣∣∣
1
M

∑N−1
m=0 |x(m)|2

. (1)

It can be shown that the degree of impropriety (DOI) k̂2x is a general-
ized likelihood ratio test (GLRT) statistic for impropriety [12, Result
3.8].

When the complex data is a random vector, x ∈ CN , the cir-
cularity spectrum (CS) characterizes the impropriety of x. The CS
is given by the singular values {ki}i∈[1,N ] of the coherence matrix
Cxx, given by [12, Section 3.2]

Cxx = R−1/2
xx R̃xxR

−T/2
xx = UKVH , (2)

where R̃xx = E
[
xxT

]
and Rxx = E

[
xxH

]
. The CS has two

compelling properties: it is invariant to nonsingular linear trans-
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Fig. 1: Constellations of complex-valued signals in the complex plane.

formations of x, and its elements are the circularity coefficients of
the maximally-decorrelated components of x. That is, if x = Gy,
where G ∈ CN×N is an nonsingular linear transform and the ele-
ments of y are uncorrelated, then ki = CC {yi} =

∣∣∣R̃yiyi ∣∣∣ /Ryiyi .
Because of this decorrelation property, the CS is an essential com-
ponent in complex-valued blind source separation [14].

2.2. Impropriety of complex subbands of noisy speech

In this paper we consider complex-valued subbands of real-valued
noisy speech signals. Consider a discrete-time noisy speech signal

y(n) = s(n) + v(n), (3)

where s(n) is speech and v(n) is additive noise. We consider a
complex-valued subband with center frequency ω = 2π nFFT

NFFT
,

nFFT = 0, ..., Nω − 1 with Nω = NFFT
2

+ 1, to be

Y (ω, n) = h(n) ∗
(
y(n)e−jωn

)
, (4)

where h(n) is a real-valued subband filter. If h(n) is symmetric, (4)
can be written as

Y S(ω, n) =
∑
m

h(m− nNhop)y(m)e−jωm, (5)

with Nhop = 1, which is easily recognized as a maximally-
oversampled STFT where h(n) is the analysis window.

If a subband contains both speech and noise, it contains two
complex-valued components, S(ω, n) and V (ω, n). We consider
the estimated impropriety of these two components over a short pe-
riod n0 ≤ n < n0 +M under the following assumptions:

1. h(n) is a real-valued subband filter of duration Nwin.

2. s(n) is voiced during the period n0 ≤ n < n0+M , so it can
be approximated within the narrow subband as a complex-
valued tone, given by

S(ω, n) ≈ Aej(ω0−ω)n+jθ. (6)

3. v(n) is zero-mean, real-valued, white Gaussian noise (WGN).
Within the subband, V (ω, n) is complex-valued, narrowband
Gaussian noise.

When the center frequency ω of a subband matches the fre-
quency ω0 of a speech harmonic, S(ω, n) is maximally improper,
because according to (6), S(ω, n) ≈ Aejθ , a constant complex
value. This constant is shown as the single fixed point in panel A
of figure 1. However, when the subband is not aligned, i.e. ω0 6= ω,

then S(ω, n) will slowly rotate over time, appearing more and more
circular. This is shown in panel B of figure 1.

Demodulating WGN, even real-valued WGN, does not affect its
whiteness; an example is shown in panel C of figure 1. Thus, since
v(n) is real-valued WGN, vω(n) = v(n)e−jωn is complex-valued
WGN. When vω(n) is narrowband-filtered, it appears in the complex
plane as a slowly wandering trajectory. An example of narrowband-
filtered, demodulated WGN is shown in panel D of figure 1.
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Fig. 2: Results of Monte Carlo experiment (10000 trials) showing
the expected sample impropriety of narrowband-filtered, complex-
valued WGN versus sample size M .

The sample impropriety of filtered WGN depends on the band-
width of the filter h(n) and the sample size M . We elect to use a
1024-length Hamming window for h(n). Given this subband filter,
figure 2 shows the results of a Monte Carlo experiment measuring
the mean and standard deviation of the squared sample circularity
coefficient k̂2 from (1) versus sample size M . Notice that k̂2 de-
creases with increasing M .

3. PROPOSED METHODS

We propose two impropriety-based VADs, one for single-channel
and one for dual-channel audio. For both approaches, the complex
filterbank in (4) of each channel can be efficiently computed using
the STFT (5) with h(n) of duration Nwin, a window hop of Nhop,
and a NFFT -length FFT. To correct for the phase rotations induced
by the STFT window hops, a phase modification is applied to each
subband, which results in a complex-valued filterbank Y (ω, n) with
subbands downsampled by the factor Nhop:

Y (ω, n) =
∣∣∣Y S(ω, n)∣∣∣ exp j (∠Y S(ω, n)− nωNhop) , (7)

where ∠Y S(ω, n) is the unwrapped phase of the STFT Y S(ω, n).

4506



F
re

q
.
b
in

|STFT |2 in dB of isolated speech

12 16 20 24

100

200

300

400

500

−20

0

20

|STFT |2 in dB of isolated noise

12 16 20 24

100

200

300

400

500

−20

0

20

|STFT |2 in dB of mix

12 16 20 24

100

200

300

400

500

−20

0

20

k̂ 2(ω, n) of isolated speech

F
re

q
.
b
in

T ime (s)
12 16 20 24

100

200

300

400

500

0

0.5

1

k̂ 2(ω, n) of isolated noise

T ime (s)
12 16 20 24

100

200

300

400

500

0

0.5

1

k̂ 2(ω, n) of mix

Time (s)
12 16 20 24

100

200

300

400

500

0

0.5

1

Fig. 3: The high impropriety of speech (lower left, quiet shown as white) tends to dominate over more proper noise (lower middle) in the
estimated impropriety of the mixed speech and noise (lower right). Spectrograms are shown in top panels.
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Fig. 4: Empirical distributions of summed degree of impropriety
(SDOI) under two hypotheses for 50 minutes of speech in 0 dB SNR
car noise (windows down, highway driving).

3.1. Single-channel method

Given a single-channel audio mix y(n) of speech and noise, we use
Y (ω, n) to estimate the instantaneous CC at each time/frequency
point (ω, n). We use a sliding window of duration Md = M/Nhop
and hop Md

hop = Mhop/Nhop in each subband to compute the CC
estimate using (1):

k̂Y (ω, n) =

∣∣∣ 1
Md

∑Md−1
m=0 Y 2(ω, nMd

hop +m)
∣∣∣

1
Md

∑Md−1
m=0

∣∣∣Y (ω, nMd
hop +m)

∣∣∣2 . (8)

For each time/frequency point, the CC estimate will be between 0

and 1. Recall from §2.1 that the DOI k̂2Y (ω, n) corresponds to a
GLRT for the impropriety of Y (ω, n).

We choose the test statistic for VAD to be the estimated DOIs
averaged across frequency, which we will refer to as the “summed
degree of impropriety” (SDOI). The SDOI for frame n is given by

SDOI(n) =
1

Nω

∑
ω

k̂2Y (ω, n), (9)

The SDOI will take on values between 0 and 1. To see the effec-
tiveness of the SDOI for discriminating between speech-plus-noise
and noise-only, we examine its empirical distribution under the two
hypotheses. Using Nhop = 16 and a sliding window length of
M = 2048 with hop Mhop = 80, figure 4 shows the distributions

of the SDOI for 50 minutes of audio with fs = 8 kHz, consisting of
TIMIT utterances [20] embedded at 0 dB SNR in car noise (window
down, highway driving) from the QUT-NOISE [21] database.

To get intuition about why these distributions are different, fig-
ure 3 compares the estimated DOIs of speech, noise, and the mix for
a short clip of the audio used for figure 4. Notice that time/frequency
points where speech is highly improper tend to dominate over more
proper noise.

3.2. Two-channel method

For two-channel data, we use the M -length sliding window to
estimate the 2 × 2 spatial covariance matrices R̃YY(ω, n) and
RYY(ω, n) at each time/frequency point (ω, n). These estimated
covariances are used to compute the two-dimensional circularity
spectrum k(ω, n) using (2).

To get a maximally discriminative test statistic, we use linear
discriminant analysis (LDA) [22, Section 8.6.3] to train two NFFT -
length vectors a1 and a2 using k(ω, n) and ground-truth labels. We
will refer to the resulting statistic as “circularity spectrum with linear
discriminant analysis” (CS-LDA), and it is given by

CS-LDA(n) =
1

2

2∑
i=1

(
1

Nω

∑
ω

ai(ω)k
2
i (ω, n)

)
. (10)

4. EXPERIMENTS

To test the performance of VAD using the SDOI (9) and CS-LDA
(10), we use the QUT-NOISE-TIMIT corpus [21], which consists of
TIMIT utterances [20] embedded in two-channel recordings of five
different types of real-world noise, with each noise type recorded at
two different locations for two different sessions (total of 20 noise
conditions). Two noise types, CAR and REVERB, also include
exponentially-swept sines, which allows estimation of two-channel
reverberation impulse responses (RIRs) using the technique of Fa-
rina [23]. The CAR RIRs are relatively short, while the REVERB
RIRs are highly reverberant. The locations of the noise types given
by Dean et al. [21] are listed in table 2.

There are six SNRs ranging from −10 dB to 15 dB. We use
the sA subset of QUT-NOISE-TIMIT, which consists of 6000, 60-
second files, for 100 total hours of audio. For each of the six SNRs,

4507



Low noise (10 or 15 dB SNR) Medium noise (0 or 5 dB SNR) High noise (−10 or −5 dB SNR)
Method %FAR %MR %HTER %FAR %MR %HTER %FAR %MR %HTER

DSB + Sohn et al. 15.17 21.49 18.33 25.91 23.24 24.58 40.55 29.77 35.16
DSB + Ramirez et al. 11.63 13.54 12.58 18.44 21.31 19.87 28.38 36.64 32.51

CS-LDA (2ch) 10.80 18.16 14.48 14.75 25.17 19.96 29.26 30.01 29.63
SDOI (1ch) 8.03 9.86 8.95 16.48 13.94 15.21 29.13 32.47 30.80

Table 1: Overall VAD results averaged across noise types on the QUT-NOISE-TIMIT corpus.

Noise type Location 1 Location 2
CAFE Cafe Food court
HOME Kitchen Living room
STREET City Suburb
CAR Window down Window up
REVERB Car park Pool

Table 2: QUT-NOISE noise types and locations.

there are 50 files for each noise type, location, and session. 25%
of the files contain 25% or less of speech, 50% have 25% to 75%
speech, and the remainder have 75% or more speech. We use a sam-
pling rate of fs = 8 kHz. For noise types without RIRs provided,
the second channel of speech is a copy of the first channel of speech.

We compare to two baseline VAD methods: Sohn et al.’s statis-
tical model-based likelihood ratio test [1] and Ramı́rez et al.’s long-
term spectral divergence (LTSD) [2]. These methods are well-suited
for comparison, because they use the magnitude (-squared) of com-
plex STFTs to derive their detection statistics.

To try and ensure a fair comparison to the two-channel CS-
LDA method, we apply a delay-and-sum beamformer (DSB) to two-
channel data before applying single-channel baselines, which gives
an average relative improvement of 4.57% in overall HTER versus
the single-channel baselines alone.

Our procedure for evaluating VAD performance is exactly the
same as that used by Dean et al. [21] and Ghaemmaghami et al. [8],
which is computing the half-total error rate (HTER) at an optimal
detection threshold. The HTER is given by the average of the false-
alarm rate (FAR) and the miss rate (MR). The FAR and MR are given
by

FAR =
# false positives

# negatives
MR =

# false negatives
# positives

(11)

To choose the detection threshold for each method—and, in
the case of CS-LDA, to train the LDA vectors ai(ω)—we follow
the same procedure as Ghaemmaghami et al. [8], which uses cross-
validation between noise locations to choose detection thresholds
for a particular noise type. For example, the detection threshold for
STREET-City noise is given by the threshold that minimizes HTER
on STREET-Suburb noise, and vice versa. This cross-validation en-
sures that the methods are robust across different realizations of the
same type of noise. Also, the six SNRs are grouped into three sub-
sets (low, medium, and high noise), which evaluates the robustness
of the methods to different levels of noise.

Decisions for the methods are made in 10 ms increments. For
Sohn et al.’s method, we use the implementation from the VOICE-
BOX Matlab toolbox with default parameters [24]. For Ramı́rez et
al., we use default parameters from their paper [2]. For SDOI and
CS-LDA, we use Nwin = NFFT = 1024, Nhop = 16, M = 2048,
and Mhop = 80. The resulting decision labels are median filtered
with a window of 1 second.
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Fig. 5: VAD results on the QUT-NOISE-TIMIT corpus. In each
stack, top lighter-shaded bar corresponds to %FAR/2, and bottom
darker-shaded bar corresponds to %MR/2.

Our results are shown in table 1 and figure 5. Our new VADs
achieve equivalent or superior performance to the baseline methods
on all noise types except for the REVERB noise type. Interestingly,
the unsupervised single-channel SDOI statistic performs better than
the supervised two-channel CS-LDA at lower noise levels (0 to 15
dB SNR), while CS-LDA performs better at higher noise levels (−10
and −5 dB SNR). Vulnerability to high amounts of reverberation
is expected, since adding many shifted copies of improper signals
together in a subband tends to make them look more proper.

MATLAB code for our impropriety-based features and methods
is available at github.com/impropriety.

5. CONCLUSION

In this paper, we have proposed two new methods for voice activ-
ity detection that exploit a previously overlooked property of com-
plex subbands of speech: second-order noncircularity, or impropri-
ety. Our methods work by estimating the instantaneous degree of
impropriety at each time/frequency point and combining the results
across frequency. We tested our method on a challenging VAD cor-
pus, QUT-NOISE-TIMIT, and our new methods achieved equivalent
or superior performance versus conventional baselines on all noise
types, except for heavy reverberation. This performance indicates
the importance and potential usefulness of impropriety in speech
processing. Future work will explore using impropriety-based meth-
ods and features for speech enhancement and recognition.
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