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ABSTRACT

In this paper we describe improvements to the IBM speech activity
detection (SAD) system for the third phase of the DARPA RATS
program. The progress during this final phase comes from jointly
training convolutional and regular deep neural networks with rich
time-frequency representations of speech. With these additions, the
phase 3 system reduces the equal error rate (EER) significantly on
both of the program’s development sets (relative improvements of
20% on devl and 7% on dev2) compared to an earlier phase 2 sys-
tem. For the final program evaluation, the newly developed system
also performs well past the program target of 3% Ppiss at 1% Py,
with a performance of 1.2% Py,iss at 1% Pyq and 0.3% Py, at 3%
P miss-

Index Terms— Speech activity detection, acoustic features, ro-
bust speech recognition, deep neural networks.

1. INTRODUCTION

Speech activity detection (SAD) is the first step in most speech pro-
cessing applications like automatic speech recognition (ASR), lan-
guage identification (LID), speaker identification (SID) and keyword
search (KWS). This important step allows these applications to fo-
cus their resources on the speech portions of the input signal. Given
its importance, the DARPA RATS program has developed exclusive
SAD systems to detect regions of speech in degraded audio signals
transmitted over communication channels that are extremely noisy
and/or highly distorted [1], in addition to building LID, SID and
KWS applications for the same data.

During the course of the program, various sites have developed
SAD systems [2, 3, 4, 5, 6, 7, 8] with an end goal of achieving per-
formances better than the final program target of 3% Ppiss at 1%
Pyq. Ppiss is defined as the ratio of the duration of speech missed
to the entire duration of speech, while Py, is the ratio between the
duration of falsely accepted or inserted speech to the duration of to-
tal non-speech in a given set of audio data. Fig. 1 illustrates IBM’s
performances over 3 phases of the program towards achieving the
final program target. Prior to the third and final phase of evaluation,
the program ran two evaluations with targets at 5% Pp,iss at 3% Py,
(phase 1) and 4% Pi,iss at 1.5% Py, (phase 2). In both these phase
evaluations, IBM systems performed past the intermediate targets.

For these evaluations, our systems are trained on recordings
from existing conversational telephone corpora (Fisher English and
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Fig. 1. IBM SAD DET curves for three phases of the RATS program
along with the final program target [9].

Arabic Levantine) and new data in Arabic, Levantine, Pasto and
Urdu distributed for the program by the Linguistic Data Consortium
(LDC) in three incremental releases. The recordings are corrupted
by transmitting the original clean audio over 8 different degraded”
radio channels, labeled A through H with a wide range of radio
transmission effects [1]. In addition to audio, the corpus of about
2000 (~250 hours of data per channel) hours of data is automatically
annotated into regions of speech, non-speech or non-transmission
by appropriately modifying the clean annotations based on unique
shift and other transmission artifacts introduced by each channel.

The trained systems are internally evaluated on two official de-
velopment sets (devl and dev2) which contain 11 and 20 hours of
audio, respectively. The final evaluation at the end of each phase is
performed on an evaluation set of about 24 hours of audio with unre-
leased transcripts. The results over the three phases of the program
in Fig. 1 are based on this same evaluation set.

In section 2 we briefly describe the phase 1 and 2 systems (per-
formances indicated by the dashed red and green lines in Fig. 1). Im-
provements to the phase 2 system [4] are then described in section
3. These improvements are validated by results from experiments
on the devl and dev2 sets in section 4. The paper concludes with a
discussion and future directions (section 5).
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2. PHASE 1 AND 2 SAD SYSTEM ARCHITECTURES

A key design consideration in all the evaluation phases was to treat
the segmentation of an audio signal into speech (S), non-speech (NS)
and non-transmission (NT) as a simple ASR decoding problem with
a three “word” vocabulary [4]. To perform the decoding, an HMM
topology with 5 states for each word and a shared start and end state
is employed. Each of the 5 states for a word has a self loop and
the shared end state is connected back to the start state. For a test
audio signal, frame-level scores for each word (S/NS/NT) are then
generated from a trained acoustic model before a Viterbi decode is
performed to generate segmentations.

Since the evaluation is closed in terms of the channels over
which data is transmitted, a second consideration in our framework
has been to create channel specific acoustic models for each of the 8
RATS channels. Although no data from any unseen channel needs to
be analyzed during test, the channel identity of each utterance needs
to be determined. Each utterance is hence processed by a channel
detector to select the most appropriate channel model for segmen-
tation. For all the phases, we use 8 channel-dependent GMMs. All
Gaussians are scored for every frame and the GMM with the highest
total likelihood determines the channel. This approach has 100%
channel detection accuracy on both dev1 and dev?2 [4].

To improve the performance of speech/non-speech detections by
creating diverse systems, starting from phase 2, we use a multi-pass
SAD pipeline. In this architecture [2], features used in the first stage
of the pipeline are normalized to zero mean and unit variance using
audio file-level statistics. The S/NS detections from the first stage are
then used to derive statistics from only speech regions. These statis-
tics are then used for feature normalization in the second stage. We
focus on two key steps of these SAD systems - the feature extraction
stage, for diverse feature representations that capture distinct prop-
erties of speech and non-speech and the acoustic modeling stage, for
appropriate models that produce reliable acoustic scores using the
employed features. For several acoustic features that we use, contex-
tual information is added by appending consecutive frames together.
The resulting high dimensional features are then projected to a lower
dimension using linear discriminant analysis (LDA). Since the num-
ber of output classes is only three, we use a Gaussian-level LDA
where we train 32 Gaussians per class and declare the Gaussians as
LDA classes [4].

2.1. Phase 1 SAD System

For the single pass SAD system developed in this phase, relatively
simple acoustic features and models are used. For each of the 3
classes - S, NS and NT, GMM models are trained on 13 dimensional
PLP features extracted every 10 ms from 25 ms analysis windows.
After the acoustic features have been normalized at the speaker level,
contextual information is added by stacking up to =16 frames. A
Gaussian-level LDA is finally applied to reduce the dimensionality
of the features to 40. Log-likelihood scores from 1024 component
GMM models trained on these features are then used as acoustic
scores with the HMM based decoder described earlier.

Additionally, a shallow neural network with one hidden layer
with 1024 hidden nodes is also trained on 9 consecutive frames of
the 40 dimensional features used with the GMM models above, to
generate posterior probabilities of the 3 target classes. Scores from
the neural network models are then combined with the earlier GMM-
based scores, using a weighted log-linear frame-level frame combi-
nation. These scores are then used along with the HMM based de-
coder to produce S/NS/NT segmentations.
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2.2. Phase 2 SAD System

In the second phase of the program we build a multi-pass SAD sys-
tem with a diverse set of features and acoustic models [4]. The
acoustic features we use include -

1. PLP features - Similar to the features used in the phase 1 system,
13 dimensional PLP features are employed but with additional post-
processing. The cepstral coefficients are not only normalized to be
zero mean and unit variance using either file-based or speech-only
based statistics but are also filtered using an ARMA filter [10] in a
temporal window of £20 frames.

2. Voicing features - The YIN cumulative mean normalized differ-
ence [11], an error measure that takes large values for aperiodic sig-
nals and small values for periodic signals, is used as a single di-
mensional voicing feature. This feature is appended with normal-
ized PLP features, yielding a 14 dimensional feature vector. After
appending contextual information from 17 consecutive frames, the
final vector is projected down to 40 dimensions (PLP+voicing fea-
ture) using a Gaussian-level LDA described above.

3. FDLP features - A second kind of short-term features [12] are ex-
tracted from sub-band envelopes of speech modeled using frequency
domain linear prediction (FDLP) [13] . These 13 dimensional fea-
tures are post-processed by a mean/variance normalization followed
by an ARMA filtering, before 4= 8 consecutive frames are spliced
and projected down to 40 dimensions using a Gaussian-level LDA.
4. Rate-scale features - After filtering the auditory spectrogram [14]
using spectro-temporal modulation filters covering 0-2 cycles per oc-
tave in the scale dimension and 0.25-25 Hz in the rate dimension
[4], 13 dimensional cepstal features are extracted similar to other
short-term features above. The rate-scale cepstra are further normal-
ized to zero mean and unit variance and ARMA filtered, before £ 8
frames are concatenated and projected down to 40 dimensions with
a Gaussian-level LDA transform.

5. Log-mel features - The log-mel spectra are extracted by first ap-
plying 40 mel scale integrators on power spectral estimates (0-8 kHz
frequency range) in short analysis windows (25 ms) of the signal
followed by the log transform, every 10 ms. In addition to a tem-
poral context of 11 frames, the log-mel features are file/speech only
normalized and augmented with their A and AAs as well.

To model these features, two kinds of acoustic models are
trained. The first set of models are deep neural networks (DNNs)
trained on fused feature streams obtained by adding various 40
dimensional features (FDLP/Rate-scale features) to the 40 dimen-
sional PLP+voicing feature stream [4]. The input to the DNNs are
320 dimensional features obtained by augmenting the 80 dimen-
sional fused features with their A, AA and AAAs. The second set
of models are convolutional neural networks (CNNs) [15] trained
on the 120 dimensional log-mel features. These networks have two
convolutional layers using sliding windows of size 9 X 9 and 4 X 3 in
the first and second layers respectively. Both of these models have 3
hidden layers with 1024 units in each layer and are discriminatively
pre-trained before fully trained to convergence.

Using these features and acoustic models, a multi-pass SAD sys-
tem is built by combining three sets of channel dependent networks
using a weighted log-linear frame-level score combination [4]. The
three models that were combined are: (i) a DNN trained on a fusion
of PLP+voicing and rate scale features with file-based normaliza-
tion, (ii) a DNN trained on a fusion of PLP+voicing and FDLP fea-
tures with speech-based normalization, and (iii) a CNN trained on
log mel spectral features with speech-based normalization. These
models were trained on all the data (2000 hours) and significantly
improve speech/non-speech detection (see Fig. 1).
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Fig. 2. Schematic of (a) separately trained DNN and CNN models combined at the score level in phase 2 versus (b) a jointly trained CNN-

DNN model, on feature representations used in phase 3.

3. IMPROVEMENTS TO THE PHASE 2 SYSTEM

For the third phase of the program we focus again on two key steps
- the feature extraction and acoustic modeling components, of the
SAD system. On the acoustic modeling front, we work on a new
acoustic modeling technique that better integrates training of the di-
verse feature representations we use. At the feature extraction level,
we investigate the use of a Gammatone time-frequency representa-
tion that provides additional complementary information.

3.1. Joint training of DNN and CNN acoustic models

One of the primary reasons for considerable gains in the second
phase was the adoption of neural network based acoustic models.
Using a DNN model, multiple input features can be easily combined
by concatenating feature vectors together. In our case we have used
a combination of diverse cepstral features - PLP+voicing features
along with FDLP or rate-scale based features. These kinds of fea-
tures, however cannot be used along with the CNNs. CNNs achieve
shift invariance by applying a pooling operation on the outputs of its
convolutional layers. In order to achieve shift invariance in the fea-
ture domain, the features have to be topographical, such as log-mel
features. Although the outputs of the CNN systems are quite com-
plementary, their benefits are combined with the DNN models only
at the score level using a simple weighted log-linear model. Given
the acoustic modeling capabilities of these models, it would however
be better if the benefits of a CNN (shift invariance) could be com-
bined with the benefits of a DNN that can use diverse features, at a
more earlier stage, by jointly training these diverse acoustic models.

In [16], a neural network graph structure is introduced which
allows us to use both topographical (log-mel features) and non-
topographical features (PLP+voicing/FDLP features) together. This
is achieved by constructing a neural network model with both con-
volutional layers similar to the input layers of a CNN and input
layers similar to that a DNN, followed by shared hidden layers and
a single final output layer. The joint CNN-DNN model is trained by
combining the outputs/gradients of all input layers during the for-

ward/backward passes. Since most layers are shared, an additional
benefit of this configuration is that it has much fewer parameters
than separate DNN and CNN models, with only about 10% more
parameters than the corresponding CNN. Preliminary experiments
for SAD in [16], showed significant relative improvement in equal
error rate (EER) from using this kind of jointly trained model over
the separate models with score fusion. EER is defined as the point
where Pp,;ss coincides with Py,. We use these models in phase 3 to
build much larger acoustic models and replace individual DNN and
CNN models which were previously trained separately.

3.2. The Gammatone feature representation

To improve the performance of the joint CNN-DNN acoustic model,
we hypothesize that it is necessary to have a more diverse feature
representation than the log-mel features as input for the CNN layers,
since the PLP, FDLP and log-mel features have similar filter-bank
representations and processing steps. Research in computational au-
ditory scene analysis (CASA) motivates the use of the Gammatone
auditory filter bank over the triangular shaped Mel-scale filter bank
since the asymmetric shape of the Gammatone filters yield a better
approximation of human cochlear filtering [17, 18]. With the Gam-
matone spectrum for feature extraction showing additional benefits
compared to traditional features such as PLP or MFCCs, on several
tasks like robust automatic speech recognition [19], speaker verifica-
tion [20, 21] and language identification [22], we use this represen-
tation instead of the log-mel features as input for the CNN layers.

To extract these features the audio data is first downsampled
to 8kHz. After pre-emphasizing, Hanning windowing, and fram-
ing into frames of 25 ms window length and 10 ms frame shift,
the Fourier spectrum is filtered by a filter bank with 64 Gamma-
tone filters. The spectrum is further post-processed by a cubed root
compression and temporally smoothed using a second order ARMA
filter. The final Gammatone features are also mean and variance
normalized on a per utterance basis. Fig. 2 is a schematic of the
proposed joint CNN-DNN architecture with Gammatone features.
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Fig. 3. ROC curves of Phase 2 and Phase 3 systems on the (a) devl and (b) dev2 sets.

4. EXPERIMENTS AND RESULTS

For the phase 3 evaluation we build a multi-pass SAD system with
two jointly trained neural network based acoustic models for each
of the 8 RATS channels on the entire 2000 hours of training data.
As in the previous phase, while the first pass acoustic model uses
file-level statistics, the second pass model relies on speech detec-
tions from the first pass to derive speech only statistics for feature
normalization. The input to the DNN layers for both these models
are 320 dimensional features obtained by augmenting the 80 dimen-
sional fused features (40 dimensional PLP+voicing features with 40
dimensional FDLP features) with their A, AA and AAAs. For the
CNN layers, 3 streams comprising of 64 dimensional Gammatone
features, their A and AAs are used. The jointly trained model has
2 DNN specific hidden layers (1024 hidden units each) and 2 CNN
specific convolutional layers (128 and 256 units each) followed by
5 shared hidden layers (1024 hidden units each) and a final output
layer (3 units). All of the 128 nodes in the first convolutional layer
of the CNN are attached with 99 filters that are two dimensionally
convolved with the input representations. The second convolutional
layer with 256 nodes has a similar set of 4 x 3 filters that process the
non-linear activations after max pooling from the preceding layer.
The non-linear outputs from the second CNN layer are then passed
onto the following shared hidden layers. More details about these ar-
chitectures, training and decoding settings can be found in [16, 23].

In our first set of experiments we compare the performance of
a jointly trained acoustic model with the score combination of sep-
arately trained DNN and CNN trained systems on devl. Table 1
shows the performance of 3 different SAD system configurations,
each using speech based statistics for feature normalization. We ob-
tain close to 12% relative improvement by jointly training a CNN-
DNN system compared to score fusion of individual systems. In a
second experiment we replace the CNN feature representation from
log-mel to Gammatone based features. With an additional 9% rela-
tive improvement from using these diverse features, a total relative
improvement of about 20% is achieved compared to the baseline.

In a second set of experiments we test the performance of the
multi-pass phase 3 system on both official development sets. The

Table 1. Performance (EER%) of DNN/CNN systems on dev1.

| System [ EER(%) ‘
Score combination of DNN (PLP
+voicing+FDLP) and CNN (log-mel) 0.97
Joint training DNN (PLP+voicing
+FDLP) and CNN (log-mel) 0.85
Joint training DNN (PLP+voicing
+FDLP) and CNN (Gammatone) 0.77

final outputs of the multi-pass system are based on a combination of
scores from the first pass and the second pass models. As discussed
earlier, both these models are jointly trained CNN-DNN acoustic
models. Fig. 3 shows the performances of the phase 2 and the pro-
posed phase 3 models. The phase 2 system is a combination of 3
models as described earlier in section 2. The phase 3 system reduces
the EER significantly on both sets with relative improvements of
20% on devl and 7% on dev2 compared to the phase 2 system. The
improvements on both these developments also translate into signifi-
cant improvements on the progress set during the phase 3 evaluation
(solid black line in Fig 1).

5. CONCLUSIONS

We have presented the IBM SAD system for the RATS phase 3
evaluation. This system achieved significant improvements over the
systems developed for previous phases. The gains come from im-
proved acoustic modeling using jointly trained CNN-DNN models
and acoustic features that differ in type and normalization. Future
work will address the effectiveness of these models on unseen chan-
nel conditions and adaptation to those channels.
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