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ABSTRACT

The i-vector representation has become increasingly popular in

speaker and language recognition systems. The estimation of the

projection matrix of the i-vector model is usually performed using

the iterative expectation maximization (EM) algorithm. This work

presents a novel approach to estimate the projection matrix of the i-

vector representation and to estimate the i-vector representation for

each utterance. In this approach, we formulate the estimation of

the projection matrix as a principal component analysis (PCA) prob-

lem. Using the relation between PCA and a linear Gaussian model

trained using the EM algorithm, we show that an approximate so-

lution of the i-vector estimation can be obtained as the solution of

a PCA problem. We evaluate the performance of our approximate

i-vector estimation on the language recognition task of the robust

automatic transcription of speech (RATS) project. The proposed ap-

proach reduces by 50% relative the computational time required to

estimate the i-vector projection matrix and by 42% relative the com-

putational time to estimate the i-vector representation compared to

the standard EM-based approach to i-vector estimation. In addition,

our experiments show improvements up to 29% relative in language

recognition performance in terms of equal error rate compared to the

standard EM-based i-vector estimation.

Index Terms— i-vector estimation, language recognition, PCA,

EM algorithm

1. INTRODUCTION

Language recognition is an essential preprocessing step of audio

streams to determine how to direct the audio for further process-

ing. For example, the language detection system may enhance the

customer service experience by facilitating the direction of the call

to an agent with knowledge of the spoken language. One of the most

popular approaches for reducing the dimension of the utterance rep-

resentation in language and speaker recognition is the i-vector ap-

proach [1]. In this approach, a projection matrix is estimated based

on a linear Gaussian model using maximum likelihood estimation

(MLE). The expectation maximization (EM) algorithm is usually

used to estimate the projection matrix iteratively [1, 2]. The EM

algorithm is guaranteed to reach only a local maximum. This makes

the estimated projection matrix sensitive to the initialization point

of the algorithm. The estimation of the i-vector projection matrix

also involves the estimation of the inverse of a positive semi-definite

matrix in the low-dimensional subspace for each utterance in each

iteration. This increases the computational cost of estimating the

projection matrix using large training data. There are many recently

suggested approaches to reduce the computational cost [3, 4] of the

i-vector training and estimation and to reduce the memory cost us-

ing variational Bayes approaches [5, 6]. The approach in [3], for

example, provides large savings in the i-vector training and extrac-

tion time, but there is a significant loss in the performance due to this

simplification.

In this work, we propose an algorithm for estimating an approxi-

mate i-vector projection matrix which significantly reduces the com-

putational time required for the estimation. In addition, this algo-

rithm, unlike the i-vector model and its previous approximations,

does not have the issues of sensitivity to initialization and making

assumptions inconsistent with the assumptions made by the UBM

model. This work builds on the relation between PCA and linear

Gaussian models which was established by the work in [7, 8]. We

construct a PCA problem which produces a projection matrix that

approximates the i-vector projection matrix. Not only the estima-

tion of the projection matrix is speedup by this approach, but also

the estimation of the low-dimensional vector no longer requires the

estimation of the inverse of a matrix for each utterance.

We evaluate the performance of the proposed approach in the

context of the language recognition task of the Robust Automatic

Transcription of Speech (RATS) program. The program targets au-

dio analytics on highly distorted radio-frequency channels [9].

In the next section, the proposed fast approximate i-vector esti-

mation approach is introduced. The experiments performed to eval-

uate the different techniques are described in Section 3. Finally, Sec-

tion 4 contains a discussion of the results.

2. THE PROPOSED APPROACH

In this section, we discuss our approach to fast approximate estima-

tion of the i-vector projection matrix using PCA. First, we provide

a brief motivation and introduction to the relation between MLE of

the projection matrix of a linear Gaussian model and the estimation

of the PCA projection matrix as introduced in [7]. Then we dis-

cuss the application of this relation to the problem of estimating the

i-vector projection matrix. We derive a PCA problem which its so-

lution provides an approximate solution of the i-vector projection

matrix estimation problem.

2.1. Motivation

The i-vector approach has been proven to be very successful in many

applications including language [10] and speaker recognition [1],

and speaker adaptation in speech recognition [11]. However, there

are many aspects of the model which can be improved:

1. Estimating the i-vector projection matrix requires the estima-

tion of the inverse of the posterior precision matrix of the hid-

den vector given the observations for each utterance. This can

be computationally expensive for a large training data set.
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2. The solution of the i-vector projection estimation is obtained

using the EM algorithm which converges to a local maximum

which is not guaranteed to correspond to the principal eigen-

vectors of the supervector covariance matrix [2].

3. Therefore the solution of the i-vector projection matrix esti-

mation is sensitive to the initialization point.

4. The assumptions of the i-vector model are inconsistent with

the assumptions of the UBM model; In the case of the UBM,

the frame-based observation vectors are assumed to be inde-

pendent and identically distributed (iid) with a GMM prob-

ability density function. While for the i-vector model, the

frame-based observation vectors are in general not iid and be-

comes iid only conditioned on the hidden vector. This may

explain why, as reported in [2], jointly updating the UBM co-

variance matrices and the i-vector projection matrix does not

improve the performance.

In this work, we develop an approximation of the i-vector setup,

called f-vector for fast vector, which:

1. does not require the estimation of the inverse of a matrix for

each utterance during the projection matrix estimation or dur-

ing the estimation of the projected vector,

2. is obtained by solving an eigenvalue decomposition problem

which converges to a global minimum. Therefore the solution

is not sensitive to the initialization point,

3. corresponds to the principal eigenvectors of the input sample

covariance matrix,

4. does not make explicit assumptions about the probabilistic

model in the original supervector space other than the as-

sumptions of the UBM model.

2.2. PCA and linear Gaussian models

Principal component analysis is viewed in [7] as a limiting case of a

particular class of linear Gaussian models. In linear-Gaussian mod-

els, the observation vector is assumed to be produced as a linear

transformation of some lower-dimensional latent vector z plus addi-

tive Gaussian noise. The latent variables are assumed to be indepen-

dent and identically distributed according to a unit variance spherical

Gaussian probability density functions. Denoting the transformation

by the P matrix, and the noise vector by v, the generative model can

be written as

x = Pz + v, z ∼ N (0, I), v ∼ N (0, R). (1)

Principal component analysis is a limiting case of the linear-

Gaussian model as the covariance of the noise R becomes infinites-

imally small and equal in all directions. i.e. R = limǫ→0 ǫI . This

leads to a PCA solution using the EM algorithm by taking the limit

of the solution for the linear Gaussian model as the covariance ma-

trix of the noise term goes to zero. In this case, the EM updates are

[7]
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where X is the matrix of all observed data, and Z is the matrix of

hidden vectors for all observed data.

2.3. I-Vector and linear Gaussian models

The i-vector model is [1, 2]

ru = Tyu + m, yu ∼ N (0, I), (4)
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where T is the i-vector projection matrix, m is the residual noise

vector, yu is the latent vector, C is the number of Gaussian compo-

nents in the UBM, nc
u is the number of observations from utterance

u assigned to the Gaussian component c, γiu
c is the posterior prob-

ability of the UBM Gaussian component c given the ith observation

vector from utterance u, oiu is the ith observation vector of utterance

u, nu is the number of observation vectors of utterance u, and µc is

the mean vector of the cth Gaussian component of the UBM.

The update equations for the i-vector projection matrix estima-

tion are [1, 2]
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E[yu] = L
−1

u T
T Σ−1

su, (9)

Lu = I + T
T Σ−1

NuT, (10)

where T c is the matrix which consists of the d rows of the T ma-

trix which correspond to the UBM Gaussian component c, E[yu]
denotes the posterior expectation of yu given the observations of ut-

terance u, E[yuyT
u ] is the posterior expectation of yuyT

u given the

observations of utterance u, L−1

u is the posterior covariance of yu

given the observations of utterance u, Nu is a dC × dC diagonal

matrix of the zeroth order statistics with the count of observations

of the utterance u assigned to each Gaussian component c in the

UBM repeated d times on the diagonal, d is the dimension of the

frame-based observation vector, Σ is a diagonal covariance matrix

of dimension dC × dC with the elements on the diagonal coming

from staking the diagonal covariance matrices of the UBM.

For the model in Equations 4-7 to have a common posterior co-

variance matrix of the hidden vector yu across all utterances, the pos-

terior covariance matrix of the hidden vector yu should be indepen-

dent of the observation count of each utterance. This can be achieved

by modeling instead of ru another random vector, tu = N
1

2
u ru. The

i-vector model for this random vector, tu, is

tu = Mhu + q, (11)

where M is the i-vector projection matrix, q is the residual noise

vector, hu is the latent vector.

The update equations for the i-vector projection matrix estima-

tion of the model in Equation 11 are

M
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2 s
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F = I + M
T Σ−1

M, (14)
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where Mc is the matrix which consists of the d rows of the M ma-

trix which correspond to the UBM Gaussian component c, E[hu]
denotes the posterior expectation of hu given the observations of ut-

terance u, E[huhT
u ] is the posterior expectation of huhT

u given the

observations of utterance u, F−1 is the posterior covariance of hu

given the observations of utterance u.

If we contrast the EM-based update equations of PCA in Equa-

tions 2 and 3 with the update equations for i-vector estimation in

Equations 12-14, we notice that the correspondence of the two prob-

lems can be improved by using the following transforms

P = Σ−
1

2 M, (15)

xu = N
1

2
u Σ−

1

2 ru. (16)

zu =

»

I +
h

P
T
P
i

−1
–

E[hu]. (17)

Substituting these values into the update equation of E[hu] in
Equation 13, we get

zu =
h

P
T
P
i

−1

P
T
xu, (18)

which is exactly in the same form as Equation 2 for updating the

hidden vector in the EM-based PCA algorithm.

The dependency of the update equation of the i-vector projection

matrix in Equation 12 on the zeroth order statistics is canceled out

once the expressions for E[hu] and E[huhT
u ] in terms of su are sub-

stituted. The only approximation needed to map the update equation

of the projection matrix of the i-vector model in Equation 12 to the

EM update equations for the PCA projection matrix in Equation 3

is to approximate the E[huhT
u ] term by neglecting the posterior co-

variance of the hidden vector hu given the observations of utterance

u compared to the term function of E[hu]E[hT
u ] i.e.

E[huh
T

u ] ≈ E[hu]E[hT

u ]

»

I +
h

P
T
P
i

−1
–

. (19)

It should be noted that this approximation does not change the low-

dimensional subspace spanned by the projection matrix but only

change the weight of the different directions in this subspace. This

approximation enables us to achieve a PCA-based model-free for-

mulation which makes no assumptions about the model in the origi-

nal feature space which may contradict the UBM assumptions. This

is in contrast with the original i-vector model formulation and its

previous approximations.

Applying this approximation, we get the following update equa-

tion for the projection matrix P ,

Pnew =
X

u

xuz
T

u

 

X

u

zuz
T

u

!

−1

, (20)

which matches Equation 3 for updating the hidden vector in the EM-

based PCA algorithm.

The estimation of the approximate i-vector projection matrix for

tu is now reduced to the estimation of the PCA projection matrix of

the vector xu = N−
1

2 Σ−
1

2 su and then multiplying the solution by

Σ
1

2 .

It is interesting to note the connection between the formulation

derived here with the work in [12]. Based on that work, it can be

shown that the l2 distance between the normalized supervectors,

xu = N
−

1

2
u Σ−

1

2 su, of any two utterances is an approximation of

the KL-divergence between the ML models of the utterances based

on the UBM. These ML models of the utterances have the Gaus-

sian component weights replaced with the normalized zeroth-order

statistics of the utterance and the Gaussian component means re-

placed with the first order statistics conditioned on the UBM. This

interpretation is very useful given that the PCA projection attempts

to minimize the least square reconstruction error.

3. EXPERIMENTS

In this section, We evaluate and compare the performance of three

projection techniques:

1. PCA: The projection matrix is estimated using the PCA ob-

jective function by eigen decomposition of the supervector

sample covariance matrix.

2. I-Vector: The projection matrix is estimated using the EM

algorithm with the ML objective function as described in [1].

3. F-Vectors: This is the proposed approach in this work. The

projection matrix is estimated using the PCA objective func-

tion by eigen decomposition of the sample covariance matrix

of the normalized vector, xu, described in Equation 16.

3.1. Implementation

The training and test data for the experiments reported here use the

LDC releases of the RATS LID data [9]. These consist of speech

recordings from previous NIST-LRE telephone recordings as well as

other RATS telephone recordings passed through eight noisy com-

munication channels. The language recognition data is comprised

of samples from five target languages and ten imposter languages.

The five target languages are Levantine-Arabic, Farsi, Dari, Pashto

and Urdu. The training data consists of about 270 hours of audio

recorded over each radio channel. The systems are evaluated on two

test sets: RATS dev2 and IBM test sets. The RATS dev2 data con-

sists of approximately 83 hours divided equally across the 8 chan-

nels. While the IBM test set consists of approximately 478 hours

divided equally across the 8 channels.

In the first set of experiments, we use acoustic features esti-

mated using the power normalized cepstral coefficients (PNCC) al-

gorithm [13]. The PNCC feature vector consists of 57 elements: 19

cepstral coefficients and their delta and delta-delta. In another set of

experiments, we use features estimated using the frequency domain

linear prediction (FDLP) algorithm [14]. In this case, the FDLP fea-

ture vector consists of 42 elements: 14 cepstral coefficients and their

delta and delta-delta.

In all the experiments reported here, the GMM-UBM is trained

using 43607 2-minute recordings from the eight channels. The

GMM consists of 1024 diagonal-covariance Gaussian components

and is trained using MLE. The three projection techniques evalu-

ated here are trained using 74116 2-minute utterances and 74116

30-second utterances. In the case of i-vector estimation, we use

the PCA projection matrix as an initial estimate of the i-vector pro-

jection matrix in the EM algorithm. This setup seemed to give us

the best performance compared to random initialization. The final

language scores are generated by six 5th order polynomial kernel

SVMs. Each SVM is trained using one-versus-all setup to generate

scores for one of the possible classes. The six classes represent the

five target languages in addition to an imposter class representing

all imposter languages. We use 82398 recordings divided equally

across all durations to train each 5th order polynomial kernel SVM.
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Table 1. Comparing the EER of PNCC systems on the RATS dev2

test set using the standard PCA, standard i-vector, and the f-vector

representations with 400 dimensions

System 2 minutes 30 seconds 10 seconds 3 seconds

PCA 3.2 5.5 9.5 16.9

i-vector 3.3 5.5 8.9 15.6

f-vector 3.0 5.1 8.1 14.9

Table 2. Comparing the EER of PNCC systems on the RATS dev2

test set using the standard PCA, standard i-vector, and the f-vector

representations with 800 dimensions

System 2 minutes 30 seconds 10 seconds 3 seconds

PCA 2.9 5.3 9.7 16.8

i-vector 3.4 5.4 8.8 15.8

f-vector 3.2 5.0 7.9 15.3

3.2. Results

In the first set of experiments, we use PNCC-based systems and set

the dimension of the low-dimensional space after projection to 400.

We compare the performance of the three projection techniques on

both the RATS dev2 test set and the IBM test set. As shown in

Table 1 for the 400-dimension systems, the systems using standard

PCA projection and i-vector projection have very similar perfor-

mance on the long durations: 2 minutes, and 30 seconds. While

on the short durations: 10 seconds and 3 seconds, the performance

of the i-vector system is significantly better than the standard PCA-

based system. The results show small improvement on all durations

from using the f-vector system compared to using the i-vector sys-

tem. The improvements are relatively larger on the 2-minute and

30-second tasks compared to on the 10-second and 3-second tasks.

Table 2 shows the results for the three projection techniques with 800

dimensions on the RATS dev2 test set. The relative performance of

the different techniques seems to be consistent with the 400 dimen-

sion case. However, the PCA-based system seems to benefit more

from doubling the dimension on the 2-minute task compared to the

other two techniques. On the 10-second and 3-second tasks, still

both the i-vector and f-vector systems significantly outperform the

PCA system. The f-vector system slightly outperforms the i-vector

system across all durations as in the 400 dimension case.

In Table 3, the results of the three 400-dimension PNCC systems

on the IBM test set are reported. The performance of the i-vector and

f-vector systems is significantly better than the PCA system on the

IBM test set across all durations except for the 3-seconds task. On

which the performance of the PNCC i-vector and f-vector systems is

only slightly better than the PCA system. The results show also that

the 400-dimension PNCC f-vector system significantly outperforms

the corresponding i-vector system on the 2-minutes task and slightly

outperforms the corresponding i-vector system on the other tasks.

In Tables 4 and 5, the performance of the FDLP system with

the f-vector representation is compared to the corresponding systems

with the PCA and i-vector representations on the RATS dev2 test set

Table 3. Comparing the EER of the PNCC systems on the IBM

test set using the standard PCA, standard i-vector, and the f-vector

representations with 400 dimensions

System 2 minutes 30 seconds 10 seconds 3 seconds

PCA 2.7 4.3 7.3 14.5

i-vector 2.2 3.4 6.5 14.0

f-vector 1.3 3.2 6.3 13.4

Table 4. Comparing the EER of the FDLP systems on the RATS

dev2 test set using the standard PCA, standard i-vector, and the f-

vector representations with 400 dimensions

System 2 minutes 30 seconds 10 seconds 3 seconds

PCA 3.7 6.0 10.7 17.8

i-vector 3.4 6.0 9.2 16.2

f-vector 3.2 5.6 8.5 15.4

Table 5. Comparing the EER of the FDLP systems on the IBM

test set using the standard PCA, standard i-vector, and the f-vector

representations with 400 dimensions

System 2 minutes 30 seconds 10 seconds 3 seconds

PCA 2.8 4.3 7.9 15.9

i-vector 1.6 3.5 7.0 14.9

f-vector 1.3 3.3 6.7 13.7

and the IBM internal test set respectively. The results are slightly

worse than the corresponding PNCC systems. But still the relative

performance of the three systems is similar. One difference is that

with the FDLP frontend, the PCA system is slightly worse on the

RATS dev2 2-minutes task compared to the other two systems.

Finally, we compare the processing time required to estimate

each of the three dimensionality reduction techniques in absolute

terms and in terms of a percentage of the time required to estimate

the 400-dimensions i-vector projection matrix in Table 6. The re-

sults are obtained using C++ binary code for i-vector estimation and

Matlab code for PCA and f-vector estimation. All experiments are

run with multithreading enabled and with approximately 10 threads

per instance on 1.5 GHz machine with 24 cores. The table shows

that both f-vector and PCA approaches save more than half the time

required to estimate the i-vector projection matrix independent of

the dimension of the projected vector. It should be noted that 42%

relative savings are also achieved in the process of estimating the

low-dimensional representation of the utterances at test time. Since

for both PCA and f-vector, this involves a matrix-vector multiplica-

tion. While in case of the i-vector, it requires the estimation of the

inverse of the posterior precision matrix of the hidden vector.

4. DISCUSSION

In this paper, we derived an approximation of the standard i-vector

representation which is estimated by solving a PCA problem. This

approach avoids issues withe i-vector model and training algorithm

such as sensitivity to initialization, and inconsistency with the as-

sumptions of the UBM model. The proposed f-vector approach also

reduces the processing time required to estimate the projection ma-

trix by a factor of more than half. This comes with slight but con-

sistent improvement in the performance compared to the standard

i-vector approach.

Table 6. Comparing the training time of the standard PCA, standard

i-vector, and the f-vector representations with PNCC frontend

System time in sec.% relative to the 400-d i-vector

400-dim. PCA 2856 48.13

400-dim. i-vector 5934 100.0

400-dim. f-vector 2955 49.8

800-dim. PCA 11709 197.32

800-dim. i-vector 25827 435.27

800-dim. f-vector 12411 209.15
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