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ABSTRACT

Voice passphrase verification is the task of deciding whether
an audio recording contains a given passphrase. It is usually
done by evaluating the likelihood of the passphrase reference
text given the audio, which requires a different ASR system
for each language. Here we look at verification when the
passphrase reference is an audio recording instead of a text.
We propose a decision likelihood ratio derived from a gener-
ative model. Training is unsupervised and needs only audio,
without labelling, so the method applies to any language for
which recorded audio exists. We report experiments on En-
glish and Urdu telephone speech, and show that our model-
based likelihood ratio largely outperforms a baseline of DTW
based on MFCC feature vectors.

Index Terms— password verification, passphrase verifi-
cation, dynamic time warping, posteriorgram, unsupervised

1. INTRODUCTION

Voice passphrase verification is used to prevent replay attacks
in speaker verification systems: it confirms that a user did
repeat the new, unpredictable random passphrase prompted
by the system. It can also be used for password reset to verify
secret answers known only to the user.

Usually passphrases are specified as text, as in [1]. At ver-
ification time, a user utterance is evaluated against a stored
text passphrase using an automatic speech recognition (ASR)
system. Several components of ASR depend on the language,
such as pronunciation rules and acoustic speech models.
Their development is costly in terms of effort and time, relies
on large transcribed databases and must be repeated for each
language. For some languages, the needed resources may not
be available so a costly collection effort is needed.

For voice passphrase verification, only audio recordings
are used. At verification time, the user utterance is compared
to a recorded passphrase spoken by a different speaker. The
decision must be robust against factors that make recordings
differ even if they contain the same passphrase: individual
speaker voice characteristics, variability in speaking rate and
pronunciation across speakers, and several other factors such
as background noise and transmission channel.

This work was funded in part by VoiceTrust and the Ministère de
l’économie, innovation et exportation (MEIE) of Gouvernement du Québec.

In other applications, speaking rate variations have been
handled by time alignment techniques such as Dynamic Time
Warping (DTW) [2]. Features like mel-frequency cepstral co-
efficients (MFCC) have been used in conjunction with DTW
to reduce speaker dependency. More recently, combining
DTW with features derived from Gaussian models (posterior-
grams) showed promising results for query-by-example [3],
unsupervised spoken term detection [4],[5], and mispronun-
ciation detection [6].

Most of these studies have cast their task as a classifica-
tion or identification problem and use an absolute distance to
compare utterances. For verification, [7] trains a model for the
distance distribution and bases the decision on the likelihood.
[6] trains a Support Vector Machine (SVM) classifier to parti-
tion the distance in two classes (accept or reject). Even though
these methods may use unsupervised models to obtain a dis-
tance between utterances, their decision process requires an
additional supervised model or classifier, trained on a corpus
labeled with good / bad decisions or, equivalently, a training
corpus labeled with the lexical content of each recording.

Here we also use posterior probabilities from a Universal
Background Model (UBM) [3][4][5], but we derive a likeli-
hood ratio for the audio password verification decision, based
on a probabilistic, generative framework, in a principled way.
In contrast to [7] and [6], this likelihood ratio can be com-
pared directly to a threshold for the decision, without the need
for an additionnal model or classifier. Since the UBM models
used to compute posteriors are also trained without any super-
vision, training only requires raw audio data, without labels.

In the next sections we present the principle of model-
based passphrase verification and the derivation of a likeli-
hood ratio for decision. We will then present experimental
results on English and Urdu databases, and compare against
baselines of more conventional DTW with MFCC features,
and a fully-trained ASR system.

2. MODEL-BASED VOICE PASSPHRASE
VERIFICATION

The voice passphrase verification task can be defined formally
as follows. Each trial consists of a target passphrase with
a unique but unknown lexical content, defined by an audio
recording X from a speaker Sx, and a test recording Y, from
another speaker Sy . The system must decide whether Y is a
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recording of the target passphrase, or equivalently, since the
passphrase itself is unknown, decide whether X and Y con-
tain the same passphrase.

The first variability to be taken into account comes from
differences in timing of the two utterances to be compared. A
common approach is to non-linearly map each utterance time
to a common time, a process called alignment or warping.

2.1. Dynamic Time Warping

The well-known dynamic time warping algorithm was orig-
inally proposed by [2] to find an optimal alignment between
two speech utterances. Let X and Y be sequences of fea-
ture vectors, xn, n = 1, ..., Nx and ym,m = 1, ..., Ny . An
alignment path τ = {(nl,ml)} is a common warped time axis
indexed by l = 1, ..., L, which provides for each l a pair of in-
dices (n,m) in the original sequences X and Y respectively.

The optimal warping path minimizes a global distance
along a particular alignment path τ , over the set T of all pos-
sible paths :

D(X,Y) = min
τ∈T

1

L

∑
(n,m)∈τ

d(xn,ym) (1)

2.2. Generative model

Assume X and Y are generated by sampling from a collection
of modelsM = {θj}, each one generating individual feature
vectors xn with probability p(xn|θj). The generative process
is as follows. For each n = 1, ..., Nx we pick a model θj
from M with probability p(θj) and generate xn. Similarly
for eachm = 1, .., Ny we pick a model fromM and generate
ym. Let’s assume that each model inM represents some sort
of lexical subunit. We’ll say that X and Y have the same
lexical content if they are generated by the same sequence of
models (null hypothesis H0). The alternative is that X and
Y have different lexical content, thus were generated by two
unrelated model sequences (alternative hypothesis H1). The
decision is whether H0 or H1 is true.

Now consider an alignment path τ . Under the null hypoth-
esisH0, for each vector pair xn,ym in the alignment path, the
probability that xn and ym were generated independently, but
by the same model θj fromM is:

p(xn,ym|H0,M) =
∑
j

p(xn,ym|θj)p(θj)

=
∑
j

p(xn|θj)p(ym|θj)p(θj)

(using the conditional independence of xn and ym given θj),
so the probability of the complete path when observations are
generated from a common sequence of models is:

p(τ |H0) =
∏

(n,m)∈τ

∑
j

p(xn|θj)p(ym|θj)p(θj) (2)

The alternative hypothesisH1 is that along the alignment path
τ , xn and ym were generated independently from unrelated
models:

p(xn,ym|H1,M) =
∑
j

p(xn|θj)p(θj)
∑
i

p(ym|θi)p(θi)

and the probability of the complete path having been gener-
ated by two unrelated model sequences is thus:

p(τ |H1) =
∏

(n,m)∈τ

∑
j

p(xn|θj)p(θj)
∑
i

p(ym|θi)p(θi)

(3)

For a given path τ , we form the likelihood ratio of the null
hypothesis H0 against the alternative hypothesis H1:

Λτ (X,Y|M) =
p(τ |H0)

p(τ |H1)
(4)

Writing (4) in terms of responsibilities γnj =
p(xn|θj)p(θj)∑
j p(xn|θj)p(θj)

and γmj =
p(ym|θj)p(θj)∑
i p(ym|θi)p(θi) , and maximizing over all paths,

the best likelihood ratio is obtained:

Λ(X,Y) = max
τ∈T

1

L

∏
(n,m)∈τ

∑
j

γnjγmj ·
1

p(θj)
(5)

We select H0 whenever Λ(X,Y) is larger than a fixed deci-
sion threshold t 1.

The interior summation in (5) is a dot product of two vec-
tors of responsibilities:∑

j

γnjγmj = γn · γm (6)

where γn = {γnj} and γm = {γmj}. Then the negative log
of the likelihood ratio of (5) corresponds to the dissimilarity
between X and Y:

− log Λ(X,Y) = min
τ∈T

∑
(n,m)∈τ

− log(γn · γm) (7)

2.3. Gender independent likelihood ratio

For mixed-gender trials, a realistic assumption for most ap-
plications is that the gender of reference X is known (for ex-
ample, when prompted passphrases are recorded by a known
speaker), but the gender of test Y is not. A well-motivated
likelihood ratio for gender independent scoring was proposed
in [8] for speaker verification. The idea is to include possible
alternatives for gender. In the numerator, the null hypothesis
assumes both reference and test to be from the same speaker.
In the denominator, all the possible same and cross gender

1In practice, experiments show that the term 1
p(θj)

can be replaced by a
constant with negligible effect.
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Dataset Description N. of Amount of N. of target N. of non-target
speakers training trials trials

RsrEng Singapore English, passphrases, 157 m 8h16 vad 1600 m 640 000 m
5 and10 digits sequences 143 f 11h33 novad 1600 f 640 000 f

PakEng Pakistan English, 223 m 1h20 vad 342 m 133 722 m
4 digits sequences 78 f 4h09 novad 126 f 17 388 f

PakUrdu Pakistan Urdu, 223 m 1h15 vad 512 m 298 496 m
4 digits sequences 78 f 4h35 novad 146 f 23 214 f

Table 1. Datasets used. Speaker gender: m (male) or f (female). Voice-activity detection: vad (used) or novad (not used).

combinations, for recordings and models, are taken into ac-
count. Using (5) and assuming equiprobable genders for ref-
erence and test, the gender-independent likelihood ratio of [8]
reduces to:

Λgi(X,Y|MM ,MF ) =
1

2
Λ(XM ,Y|MM )

+
1

2
Λ(XF ,Y|MF )

(8)

where XM , MM refer to male audio reference and model,
and XF , MF refer to female audio reference and model.
So a reference audio of each gender is needed and the test
passphrase is aligned with each, using the corresponding gen-
der model 2 in (5); the two scores are then combined accord-
ing to (8).

2.4. Normalization without models

For conventional DTW with MFCC observation vectors, the
similarity of (1) and (7) also suggests the following treatment.
For the null hypothesis, using de(xn,ym) for the Euclidean
distance between xn and ym, we have:

De(X,Y|H0) = min
τ∈T

1

L

∑
(n,m)∈τ

de(xn,ym)

For the alternative hypothesis, we relax alignment constraints
by matching each feature vector in X against every vector of
Y (and reciprocally), in effect considering X and Y as ”bag-
of-frames”. Then we can write, in terms of de(xn,ym):

De(X,Y|Hbof ) =
∑
n

min
m

de(xn,ym)

+
∑
m

min
n
de(xn,ym)

And by similarity with log domain equations, the verification
score is expressed as a difference:

Ddiff (X,Y) = De(X,Y|Hbof )−De(X,Y|H0) (9)

2Although not described here, there is a fairly simple procedure to obtain
gender dependent UBM models in a completely unsupervised way.

We found that Euclidean distance could not be used without
normalization, and using a difference instead of a ratio pro-
vided significantly better performance.

3. EXPERIMENTS

We used three datasets originally collected for text-dependent
speaker recognition and already divided into training, devel-
opment and evaluation, without speaker overlap, as detailed
in Table 1.

Passphrase verification trials were derived from devel-
opment sets. Each trial is a test recording by one speaker
and either a target recording of same passphrase by a dif-
ferent, random speaker, or a non-target recording of another
passphrase by a different, random speaker. Same speaker,
different passphrase utterances were excluded, as typical
applications use pre-recorded prompts from a non-user.

RsrEng was derived from the RSR2015 database [9].
Passphrases consist of 30 English sentences common to all
sessions and speakers, and 5 and 10 digit sequences in ran-
dom order. PakEng and PakUrdu contain random 4 digit
sequences recorded over the mobile phone network, with
much more background noise than RsrEng.

MFCC features vectors with 13 static, delta and delta-
delta coefficients, for a total of 39 dimensions, were extracted
every 10 ms with a 20 ms sliding Hamming window. Cepstral
mean of each utterance was subtracted. For voice-activity ex-
periments, we used a self-adaptive VAD [10].

Trials were scored with MFCC features using the nor-
malization of (9), or with UBM posteriors as in (5) and (8).
Scores were mapped with a sigmoid to the [0, 1] interval and
compared against a varying threshold to build a detection er-
ror tradeoff (DET) curve.

The amount of data used for training Gaussian mixture
UBMs appears in the 4th column of Table 1. After a number
of preliminary experiments on each dataset, the number of
Gaussians components in UBM models was fixed at 1024,
and the smoothing constant to be added to responsibilities at
10−12. Interestingly, those values were optimal for all three
datasets despite the varying amounts of data, and were kept
for all experiments reported here.
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We report development set results with Equal Error Rate
(EER), the point on the DET curve where false acceptance
rate (FAR) equals false rejection rate (FRR). For RsrEng, a
different decision threshold was used within each subset of
passphrases, 5-digits and 10-digits, but errors from all trials
were aggregated to yield a single EER measurement. When
using gender-dependent UBMs, a different threshold was also
used according to the UBM gender. Unknown gender results
are obtained by adding up cross-gender and same-gender tri-
als, in effect simulating a random choice of reference gender.

3.1. Results

Table 2 compares the use of gender information in scoring
for RsrEng. First row simulates an unrealistic situation where
test gender is known: a gender-dependent (GD) UBM with
same gender as the test can be used. For unknown test gender
(2nd row), performance is degraded, but much less for UBM
posteriors than for MFCC features, even for GD-UBMs. The
last row shows that gender-independent (GI) scoring of (8)
improves UBM results, surpassing even known-gender per-
formance of row one. This was observed on all datasets, so
all remaining results will be reported with GI scoring (corre-
sponding to the last row of Table 2).

Gender MFCC GI-UBM GD-UBM
Known 3.3% 2.1% 2.1%
Unknown 6.8% 2.7% 2.4%
Independent 3.7% - 0.8%

Table 2. EER for RsrEng according to gender use in scoring.

Voice-activity detection is investigated in Table 3. The
use of VAD reduces EER for both UBMs and MFCCs, with
UBMs providing better results. The best scenario corresponds
to the last column, where VAD is applied when training
UBMs but not at verification time.

Dataset MFCC UBM
novad vad novad vad vad-train

PakEng 28.7% 26.5% 18.1% 16.7% 15.2%
PakUrdu 27.3% 25.7% 38.9% 19.9% 14.0%

Table 3. EER when VAD is used in test and training (vad), in
training only (vad-train) or not at all (novad). GI scoring.

Although trials were created with a random speaker for
each reference, in practice prompted references would be
recorded by one ”good” speaker (per gender). To investi-
gate how random references affect results, we selected one
”golden” speaker per gender and dataset, i.e. the one with
the best false alarm and rejection statistics. Table 4 shows
that UBM scores are less sensitive to the particular choice

of speaker, but that it is possible to select a speaker that will
provide better results than random references.

Dataset MFCC UBM
Random Golden Random Golden

PakEng 26.5% 19.4% 15.2% 13.7%
PakUrdu 25.7% 23.0% 14.0% 13.0%

Table 4. EER for with reference audio from random or golden
speakers. VAD used in training but not test.

Finally, in Table 5 we compare the unsupervised method
proposed here with a more conventional speech recognition
approach developed in previous work. The last column (la-
belled ASR) shows the EER obtained with an in-house GMM-
HMM ASR system for English, using text-based references.
The ASR system was trained on the RT03 conversational
speech training set (2003 NIST Rich Text Transcription), and
had 6600 context-dependent triphones for a total of 59K gaus-
sian components. We used the ratio of the forced alignment
acoustic likelihood to the more relaxed phoneme recognition
acoustic likelihood. The second column (labelled UBM) re-
calls the best English results from previous tables. For both
ASR and UBM, gender-dependent models were used and
the same gender-independent scoring method was applied
to combine scores. Note that in speaker verification experi-
ments, RsrEng is known to be a clean dataset which yields
low error rates [9] while PakEng is more difficult. The table
shows that even though relative system performance vary a
lot depending on the dataset, the unsupervised UBM-DTW
approach proposed here is competitive with a large, fully
supervised ASR system.

Dataset UBM ASR
RsrEng 0.8% 5.2%
PakEng 13.7% 10.0%

Table 5. EER on English datasets with likelihood ratios from
unsupervised UBM (UBM) or fully-supervised speech recog-
nition (ASR).

4. CONCLUSION

We proposed an approach to audio passphrase verification
based on DTW with a likelihood ratio using UBM posterior
probabilities. UBM training is unsupervised, requiring only
audio data, without labelling. We also investigated methods
for gender-independent verification, and the impact of voice-
activity detection. Together these methods enable deployment
of passphrase verification for any language with minimum ef-
fort, and with results competitive with a language-specific,
ASR based system.
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