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ABSTRACT In this work, we investigate the influence of exemplar-based
speech enhancement using NMF on the performance of a DNN-

Deep neural network (DNN) based acoustic modelling has been  HMM-hybrid setting. NMF-based speech enhancement systems
cessfully used for a variety of automatic speech recognithSR)  work by decomposing the noisy speech as a sparse non-reegativ
tasks, thanks to its ablllty to learn higher—level informatusing linear combination of Speech and noise exemp|ars storetbassa
multiple hidden layers. This paper investigates the régeib-  in a dictionary. The resulting speech and noise estimateshan
posed exemplar-based speech enhancement technique aispiect  ysed to generate a time-varying filter to enhance the noi§yTfd
dictionaries as a pre-processing stage for DNN-basedragstén  the enhanced speech is obtained using overlap-add mettiodhei
this setting, the noisy speech is decomposed as a weighte®SU enhanced STFT [7,8].
atoms in an input dictionary containing exemplars samptethfa
domain of choice, and the resulting weights are applied tow c
pled output dictionary containing exemplars sampled inshert-
time Fourier transform (STFT) domain to directly obtain gpeech
and noise estimates for speech enhancement. In this wdtikgse
using input dictionary of exemplars sampled from the STFEJ-M
integrated magnitude STFT and modulation envelope spec#a

evaluated. Experiments perfo_rmed on the A.URORA'4 datatmse obtain the speech and noise estimates in the STFT spacwifajo
vealed that these pre-processing stages canimprove floerpance . the decomposition using the input dictionary (containirgraplars

of the DNN-HMM-based ASR systems with both clean and multi-,m the Mel or MS space), has successfully been used to averc
condition training. these issues [3,9].

Index Terms— deep neural networks, non-negative matrix fac-  There exist some studies that investigate the applicatfoa o
torisation, coupled dictionaries, speech enhancementiulation  speech enhancement front-end for DNN-based ASR settingg Th
envelope study presented in [11] shows that the performance of a Ddet
setting can be improved by using a front-end based on the IHDNP
speech enhancement algorithm [12] which makes use of spaatt
locational characteristics of speech and noise for noideatéon. A
feature enhancement front-end based on Cepstral-domaimmn
mean squared error (C-MMSE) criterion [13] was investigate
[14] which yielded only marginal improvements with a DNNitrad

It has been found advantageous to use exemplars from adeatur
space other than the STFT domain [2,9]. In this case, the mgop
speech and noise estimates to the STFT space may be a lowpank
proximation (e.g., Mel feature space [8]) or even non-lireea non-
unique (e.g., modulation spectrogram (MS) domain [10]). &n
proach using coupled dictionaries, where an output diafipicon-
taining exemplars sampled from the STFT domain is used &zt

1. INTRODUCTION

Automatic speech recognition (ASR) in realistic condiipwhere
the acoustic data is mixed with a variety of noises and cHarmamz-
tions, is stlll_a major rgsearch c_hallenge. Most of the_ trada_l ASR  nhenhanced noisy data.
systems, with acoustic modelling based on Gaussian mixtae:

els (GMMs), make use of some speech/feature enhancemeht mec NMF speech en_hancement using Mel features for' DNNs was
anism as a pre-processing stage to improve the system naissst previously explored in [8] and the setting was found to inwerthe

: : : . " ASR performance. However, the setting used a pseudo-mvers
Monaural signal separation techniques like non-negatie¢ofisa- . ; ]
tion (NMF) [gl], whicph exploit a Iong temporal conte?(t, haveem MaP the speech and noise estimates in the Mel space to the STFT
successfully used as a speech enhancement front-end foovimg space. L_Jsmg a psc_audo-mverse W'”. always result in a lowk rp-
the GMM-HMM-based ASR performance [2,3] proximation [9] which may be detrimental for a large vocaioyl

- . . — task. In this work, we consider this setting as one of the Ibase
Recently, acoustic modelling using deep neural networRiNB), . d furth | . lar-based I

dubbed DNN-HMM-hybrid systems, gained popularity over theSettlngs and further explore using exemplar-based sp ge-

L . o o ment for various choices of exemplars together with couplietio-
GMMs due to their improved robustness in realistic condgi@4]. - ) . -
State-of-the-art DNN-based systems contain multiple éridthy- naries for DNN-based ASR systems. We also investigate weheth

) : . PG exemplar-based techniques can further mitigate speakibilay
ers, which enable the setting to learn higher-level infdromain . . .
. . . in a DNN-based setting, as observed in a GMM-based ASR set-
the acoustic data, together with an output layer that aieeato ting [15]
provide pseudo-likelihoods for the states of an HMM [5,6]. 9 - o . .
This work mainly investigates the following aspects of a DNN

This work has been funded with support from the European Cismm 0ase€d ASR decoder: how much an exemplar-based speech enhanc
sion under Contract FP7-PEOPLE-2011-290000 (INSPIRE)laftSBO ~ ment front-end with Mel, STFT and MS exemplars can benefit a
Project 100049 (ALADIN). DNN trained on clean data? Can the performance of DNNs tdaine

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 4485 ICASSP 2015



on multi-condition data be further improved using an exempl : noisy data
based pre-processing stage? Will the low-rank approxanatihile :
mapping the Mel estimates to the STFT space have any detainen o ' JL
effects on the ASR task? How much a DNN-based ASR setting can  17aining IFr;put Exertnp;]a =5 AN = pin o AN
benefit from enhancement using the MS features together avith data cpresentano |
coupled STFT dictionary? X ﬂ

In section 2, we describe the exemplar-based speech erhance STFT Exempla L & — Adftxin
ment technique using coupled dictionaries and the DNNébhaek- Representatior=> Adft = A = AS?,“X?{,‘
end for ASR. Section 3 details the various settings evatLigt¢his !
work. The experimental setup for evaluation on the AURORA-4 TRAINING | TESTING
database is explained in Section 4 followed by results aadudk !
sion in Section 5. Section 6 concludes the paper. Fig. 1. Block digram overview of the proposed system to directly

obtain the STFT estimates using coupled dictionaries.
2. METHODOLOGY ) ) o )
gorithm to directly use the activatio®™ to reliably reconstruct the
2.1. Speech enhancement using coupled dictionaries underlying STFT estimates.

The spe_ech en_ha_lncement technique using cogpled dicti'r_xriard?x- 2.2. ASR evaluation using DNNs

plained in detail in [9]. Here we only summarize the main stap

the algorithm. The evaluations are done on the AURORA-4 database using the
For exemplar-based speech enhancement using coupled- dicti Técipe” DNN-HMM-based recognizer in the Kaldi toolkit [L6A

naries, the NMF-based decomposition is done using an iriptiod ~ DNN is simply a multi-layer perceptron with multiple hiddéay-

nary A" = [A" A""], whereA" and A" are speech and noise dic- ers between its inputs and outputs. Performing back-pratfmy

tionaries containing exemplars sampled from speech argkpgg-  training on such a network can result in a poor local optimuith w

spectively. The exemplars can be from an additive and ngative @ randomly initialized network weights. To circumvent thaspre-

feature of choice extracted from random segments of trgidita  training is done first by considering each pair of adjacepets as

spanningT frames (which are reshaped to a vector) for temporalestricted Boltzmann machines (RBM) [17] and then a baclgro

continuity. We refer to this exemplar space, where the NMBeld ~ gation training is done over the entire network such thatavjdes

decomposition is obtained, as thgput exemplar space and is de-  Posterior probability estimates for the HMM states [5].

noted using the superscript ‘in’. To perform ASR using a DNN-HMM-hybrid setting, the state
For testing, the noisy data is first converted to the timgifemcy ~ €mission likelihoods generated by the GMMs are replacechby t

representation used to create the exemplars, and a slidimpw  Pseudo-likelihoods or scaled-likelihoods generated leyDNN.

of lengthT" frames is moved along its frame-axis with a hop size

of 1 frame. The features belonging to each of these windows are 3. EVALUATED SETTINGS
reshaped and stored as columns in the observation miftiwhich .
is decomposed to obtain the activatiad as: In this work, we evaluate the exemplar-based spee_ch enfmamte
xin for three different input exemplar spaces: Mel, magnitu@iEB(re-
T ~ { L in} AKX s XS0 () ferred to as DFT hereafter) and MS spaces, also denoted tising
As Axn xin - superscripts ‘mel’, ‘dft’ and ‘MS’, respectively. Each dfdse set-

tings are detailed in this section.
The approximation is done to minimize the Kullback-Leibdarer-
gence betwee®™" and A" X" with an additional sparsity constraint
onX" [2].

To directly obtain the magnitude STFT estimates (denoteld wi In this setting, DFT exemplar space is chosen as the inpunexe
superscript ‘dft’) of speech and noise, we use a coupledd@BFT  plar space to obtain the NMF-based decomposition. To o&ih
dictionary A = [AZ" AY, where A" and A% contains exem-  exemplars to create the input dictionaty™, a random segment of
plars extracted from the same random pieces of trainingudsd to  acoustic data spannirifj frames (or7; seconds in time domain) is
createAy and A}, respectively. The windowed magnitude STFT taken and its full-resolution magnitude STFT of siZex T is con-
estimates for speech and noise are obtained respectivély as sidered for non-negativity, whet€ is the number of frequency bins
ASXM and i, = AMXDN, Notice that there are multiple in- used to obtain the STFT. This is then reshaped to a vectongttie
stances of the same frame appearing over multiple columtissn  F - T' to obtain its DFT exemplar representation.
windowed estimate. The frame-level speech and noise dstnia During testing, the noisy data is converted to its equivaldfT
the magnitude STFT domais, and i, are then obtained by aver- exemplar space representati@i" as in Section 2% is decom-
aging out the frames belonging to multiple overlapping wind as  posed usingA " to obtain the activationX“". Notice that in this
explained in [2]. Let this operation be deonted 45 i.e. for exam-  setting, both the input and output dictionaries are sasfe£ A™).
ples = [8w]". The speech and noise estimates are obtainéd=a$A X" and

The noisy STFTY is enhanced d¥enn = Y ®80(8+1), where i = [AMX %)% respectively. These estimates are used to obtain the
© and © denote the element-wise multiplication and division, re-enhanced STFT 88enh=Y © 8 © (8 + A).
spectively. The enhanced speech is then obtained usingénkap-
add meth_od. The processing_chain to .directly obtai_n the oviredi 3.2. Mel-Mel' and Mel-DFT Settings
STFT estimates are summarized in Figure 1. Notice that the co
responding exemplars for both the input and output dictiesaare  Here, the NMF-based decomposition is done usingMiekdictio-
extracted from the same piece of training data which enabieal-  nary A™ containing Mel exemplars as its columns. A Mel exem-

3.1. DFT-DFT Setting
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plar is obtained by pre-multiplying a magnitude STFT of size T’
with the STFT-to-Mel matriXM which contains the magnitude re-
sponse ofB Mel bands along its rows. i.eM is of sizeB x F.
The resulting Mel-integrated magnitude STFT is reshapexbtain

a Mel exemplar of lengttB - T'. During testing, the noisy speech
expressed in the Mel exemplar spa#&™® is decomposed using
A™ = A™ = [A™ A™ to obtain the activationX™. These
activations are used to evaluate two settings.

(clean utterances in test A added with 6 different noisedypam-
ming t0 330 - 6 = 1 980 utterances), test C (330 clean utterances
with microphone variation), test D (6 noisy versions of tatees in
test C, summing td 980 utterances), all from 8 speakers. The six
noise types used in both test B and D are car, street, traiorsta
babble, restaurant and airport noises added at varying ShiiReen
5and 15 dB.

For training the acoustic models and creating the dictiesar

First, as a baseline system, the setting which uses a pseuddlean training set and multi-condition training (MCT) saets used,

inverse to obtain the STFT is evaluated. For this, we obtaé t
frame-level speech and noise estimates in the Mel dor®aie-
[ATEXMe andf’ = [ATX™®)* and multiply these wittM T =
MT(MMT) ™! to map these estimates to the STFT domain. Here,
denotes matrix transpose. The enhanced STFT in this sédtivty
tained as¥enn =Y ® {M'8'} © {M'(8' +@’)} [8]. This setting
is referred to adMel-Mel ' setting.

both containingr 137 utterances each from 83 speakers. The MCT
contains clean utterances with microphone variation amsyndter-
ances with artificially added noises present in the testatetarying
SNRs between 10 and 20 dB. The database also contains a devel-
opment set with the same structure as that of the test sets, 0
speakers.

Next, the setting which directly obtains the speech andenois4.2. NMF-based speech enhancement

estimates in the STFT domain using the coupled dictiongpoyageh
is evaluated. The enhanced STFT in this case is obtain&tas=
Y ©50 (8+1), wheres = [ASX ™) andi = [AXT]* (refer
Section 2). This setting is referred toldel-DFT setting.

3.3. MS-DFT Setting

This setting makes use of MS exemplars to obtain the compoalt

model using NMF. The MS representation was proposed as fpart o

computational model for human hearing which relies on thefte-
guency amplitude modulations within various frequencydsgi8].
To obtain an MS exemplaf]’ frames of acoustic data are consid-
ered and are filtered using a filter-bank haviigchannels (to have
a reliable comparison with the Mel-based settings). Theltieg B
band-limited signals are half-wave rectified to model negative
nerve firings and low-pass filtered at a 3 dB cut-off frequeaty
around 20 Hz to obtain the modulation envelopes. The madmitu
STFT of these envelopes yieldmodulation spectrograms [10] of
size K x T each, wheréx is the number of modulation frequency
bins used to obtain the STFT.

As there is a low-pass filtering operation, it is possiblertmi
cate each of these modulation spectrograms to their lowestsay
k, bins [3,19], i.e, each modulation spectrogram now hasksizd".
To obtain a two-dimensional representation, we stack these-
ulation spectrograms originating fro® channels to a matrix of

size (B - k) x T. These are then reshaped to a vector of length
B - k - T to obtain the MS exemplar [3]. Let the MS dictionary be

AMS — [AMS AMS].

During testing, the noisy data expressed in the MS exemplar
domain is decomposed using the MS dictionary to obtain the ac
The frame-level speech and noise estimates for

tivations XS,
enhancing the noisy STFT are obtainedsas= [A%"XS]* and

n = [AYXMS]* respectively. Notice that such an approxima-
tion will work only if the mapping between the MS and the DFT

exemplars are one-to-one. In our previous work, temporatsam-
pling while obtaining the modulation spectra is successfuged to
remedy this [9].

4. EXPERIMENTAL SETUP

4.1. AURORA-4 database

The dictionaries used by the NMF-based speech enhanceetent s
ting was created using the utterances present in the MCTT$et.
speech dictionaries were created using the clean speemiandes
present in the MCT set. The noise data needed for creatingpilse
dictionaries were obtained by subtracting the originahilspeech
from the noisy utterance as in [3,8]. To obtain the exemplars
creating the coupled dictionaries, a segment of trainireesp or
noise segment spanniffg= 15 frames, as used in [8,20] is taken at
random and the following operations are used to obtain topled
exemplars from each domain.

1. The DFT exemplar is obtained by taking the magnitude STFT
of the segment with a window-length and hop-size of 25 ms
and 10 ms, respectivelyF’ = 512 bins were used, which
was truncated to the first 256 bins considering only the posi-
tive half of the symmetric spectrum. The resulting magreétud
STFT of size256 x 15 is reshaped to obtain a DFT exemplar
of length3 840.

2. To obtain the Mel exemplar, the magnitude STFT obtained
above is pre-multiplied with the STFT-to-Mel matiM con-
taining B = 40 Mel bands. The resulting Mel-integrated
spectra of sizel0 x 15 is reshaped to obtain the Mel exem-
plar of length600.

3. To obtain the MS exemplar, the time domain signal is first fil
tered intoB = 40 channels using the equivalent-rectangular
bandwidth filter-banks implemented using Slaney’s toolbox
[21]. The modulation envelopes are obtained with a low-pass
3 dB cut-off frequency of 30 Hz (as in [3,9]). The result-
ing modulation envelopes are then converted to its magni-
tude modulation spectrogram representation using a window
length of64 ms with K = 1024 frequency bins. Notice that
a hop-size of aroun@5 ms is sufficient for this setting. To
make the mapping between the Mel and DFT exemplars as
close as one-to-one, a temporal oversampling with a hop size
of 10 msis used [9].

The values ofK = 1024 and a low-pass cut-off of 30 Hz
results in a value of = 5 bins. Therefore, each of the modu-
lation spectra is truncated to its lowest 5 bins and are sthck
to get a representation of si280 x 15. The MS exemplar is
obtained after reshaping it to a vector of length00.

In this work, speech dictionaries @f 000 coupled speech ex-

AURORA-4 database is a large vocabulary continuous speecemplars each, extracted by random sampling, are used. The co
database based on the WSJO corpus of read speech. The test @et noise dictionaries used are comprised of two parts. édfpart

of the corpus is divided as: test A (330 clean utterances}, Be
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Setting | testA testB testC testD| Avg. Setting | testA testB testC testD| Avg.

No Enh. 2.9 45.2 43.6 64.5 | 50.3 No Enh. 3.5 7.3 10.3 218 | 135
Mel-Mel 2.8 17.3 39.8 45.1| 29.8 Mel-Mel’ 3.6 6.6 10.4 20.7| 12.7
DFT-DFT 2.8 24.8 39.9 48.4 | 34.4 DFT-DFT 3.4 6.8 9.7 20.3 | 125
Mel-DFT 2.8 15.9 394 42.8| 28.1 Mel-DFT 3.6 6.8 10.3 20.8 | 12.9
MS-DFT 2.7 14.8 38.9 40.8 | 26.8 MS-DFT 35 6.2 10.2 19.4 | 11.9

Table 1. Average WERs in % obtained for various settings on the ~ Table 2. Average WERs in % obtained for various settings on the
AURORA-4 database with DNN trained on the clean training data. AURORA-4 database with retrained DNNs on enhanced MCT data.
Best scores are highlighted in bold font. Best scores are highlighted in bold font.

segments, and a small (“sniffed”) noise dictionary exedclrom  gesting that the pseudo-inverse mapping in the latter co tetri-

cyclicly shifted versions of the firsf = 15 frames of the noisy test mental effects on the accuracy of the system.

utterance that is being decoded (resulting in 15 exemplats§ re- Also notice that there is a WER improvement for both test A

sults in a total ofl5 015 exemplars in all the dictionaries. The fixed and C clean speech sets as well. It can be attributed to tie abi

part of all the coupled dictionaries are created only onckama kept ity of exemplar-based models to reduce the speaker vatjawihile

fixed for all the evaluations in this paper. training and testing, due to the projection onto the cle@esp man-

The NMF based decomposition is obtained witi) iterations |f0|d, similar to the observation made for a GMM-based ASFBBQ

of NMF-multiplicative updates with the activatiod&" initialized as 1N [15]-

(A™T®". Sparsity penalties used to obtain the speech activations

for the decompositions using the Mel, DFT and MS dictiormdee 5.2, Results on retrained DNNs

1.2, 1.7 and 1.6 respectively, which are tuned using the develop- . . .

ment set [3,8]. For all settings, the sparsity penalty fdseactiva- | "€ ASR results obtained using the retrained DNNs are tegulla

tions are fixed a8.5 times the speech sparsity penalty, to avoid extralaPle 2. Itis evident that a DNN trained on the MCT data caidyie

computational effort while tuning both the speech and nefsesity ~ SUPerior WER improvements over a DNN trained on clean data,

penalties in a grid search [8]. thanks to its multiple hidden layers. It can be seen‘that amp_iar—
based speech enhancement front-end together with DNNmiega
can further improve the performance of a DNN-based ASR syste

4.3. DNN-HMM-based decoder for ASR for all test cases.

) ) o Also notice that, unlike the observations made with the rtlea
In this work, DNNs trained on clean training data and enhdnce DNN, the Mel-DFT and Mel-Mél settings yielded almost similar
MCT data, referred to adean DNN andretrained DNN, are used for  \yERs and the DFT-DFT setting performs better than the Medthas

ASR evaluation. To obtain a retrained DNN, the MCT data i¢ firs gettings with retrained DNNs. These can be attributed tabikty
enhanced using the respective speech enhancement fibatethe  of the DNNs to learn the deformations introduced by the speee
resulting data is used to train the DNN. The recipe recogiiased  pancement front-end as well while retraining. The MS-DFffiisg
on DNN in the Kaldi toolkit is based on the implementation-pre yie|ded the best overall performance in this setting wittiistically

sented in [5]. All DNNs used are comprised of 6 hidden layétew  gjgnjficant WER improvements gf < 0.0001 over the no enhance-
2048 sigmoid neurons per layer. The input layer used 40 Mef-co  ment setting angh < 0.001 over the Mel-Mel baseline setting.
ficients with a temporal context of 11 frames, summing to altok

440 input features. Average word error rates (WERYdrare used

to evaluate and compare the performance of the variousgstti 6. CONCLUSIONS AND FUTURE WORK
In this work, we investigated the performance of a DNN-HMM-
5. RESULTS AND DISCUSSION based ASR system with an exemplar-based speech enhancement
front-end. It is observed that the ASR performance on clpaech
5.1. Results on DNN trained on clean data using clean DNNs can be further improved using the exemplar-

based techniques. The WER improvement can be attributdukto t
The results obtained for a DNN trained on the clean trainetgos  ability of the investigated exemplar-based systems in gieduthe
the AURORA-4 database are tabulated in Table 1. The first rowoise mismatch (by speech enhancement) and speaker mniismatc
denotes the results obtained on the AURORA-4 data withoyt an(by projecting the test features to clean speech maniféldpeech
pre-processing. Only the clean part of the developmentwgets  enhancement front-end with MS exemplars was also investiga
used for cross-validation during the clean DNN training. in this work, which yielded statistically significant imprements.

It is evident that the noise mismatch (set B and D) and channel is also observed that retraining the DNNs using the enddnc
mismatch (set C and D) both have a detrimental effect on tbe-ac multi-condition training data can further improve the aeay of
racy of the system without enhancement. We succeed beslis+e a DNN-based system. The best performing settings in thik wor
ing the discrepancy caused by the noise mismatch, becaasésth yielded an average overall WERs 26.8% and 11.9% with clean
what the enhancement is designed for (Wiener-like filterimg no  and retrained DNNS, respectively.
convolutional channel mismatch model). A relative WER ioya- One future work is to explore the setting based on the MS fea-
ment of around0% is obtained with the speech enhancement front-tures for other choices of low-pass 3 dB cut-off frequencies
end using MS exemplars over the setting with unenhanced @ata  exemplar sizes. Since the MS features are motivated fromahum
Mel-DFT setting yielded a better performance when compaoed auditory processing, another research direction is tosinyate the
the Mel-Mel setting even though the NMF-based decompositiongperformance of a DNN with the MS features at its input layeams
in both systems are done using the same the Mel dictionags, attempt to model human speech recognition.
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