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ABSTRACT

This paper describes a new corpus of multi-channel audio data de-
signed to study and develop distant-speech recognition systems able
to cope with known interfering sounds propagating in an environ-
ment. The corpus consists of both real and simulated signals and
of a corresponding detailed annotation. An extensive set of speech
recognition experiments was conducted using three different Acous-
tic Echo Cancellation (AEC) techniques to establish baseline results
for future reference. The AEC techniques were applied both to single
distant microphone input signals and beamformed signals generated
using two state-of-the-art beamforming techniques. We show that
the speech recognition performance using the different techniques is
comparable for both the simulated and real data, demonstrating the
usefulness of this corpus for speech research. We also show that a
significant improvement in speech recognition performance can be
obtained by combining state-of-the-art AEC and beamforming tech-
niques, compared to using a single distant microphone input.

Index Terms— microphone array, ASR, barge-in, acoustic echo
cancellation

1. INTRODUCTION

The European DIRHA project (Distant-speech Interaction for Ro-
bust Home Applications) investigates voice-enabled automated con-
trol of services and devices in an apartment. Hands-free speech in-
teraction with an automatic system using distant microphones dis-
tributed in the environment requires multi-channel front-end pro-
cessing including optional spatial filtering for selective acquisition
of the desired speaker and a technique for suppression of disturbing
contributions from unwanted acoustic sources [1]. Some of these in-
terferences may be directly acquired at their source (e.g. audio from
radio/TV or the acoustic messages generated by the spoken dialogue
management system) and used as references to suppress their effect.

A key requirement for developing these front-end components
and the entire speech recognition chain is suitable multi-microphone
speech corpora. During the past decade, several projects and collab-
orative programmes have addressed the development of corpora and
challenges for studying distant-speech interaction scenarios, such as
CHIL [2], AMI [3], REVERB [4], PASCAL-CHIME [5], GRID
[6]. Most of these corpora were developed to investigate distant-
speech recognition, speech separation and enhancement in noisy en-
vironments, based on single or multiple distant microphones. It is
also worth noting that some of these data sets were developed us-
ing simulations. The convenience of using realistic simulated data
to train distant-speech recognition systems was explored previously
[7], most recently in the context of the DIRHA project which has
created a new set of multi-microphone speech corpora [8, 9].

The aim of this paper is to introduce a corpus designed to de-
velop voice interaction solutions that are also effective when known
audio sources are active, and in particular when the user tries to in-
terrupt a voice message generated by the system, corresponding to
what is referred to as the barge-in condition [10, 11].

To the best of our knowledge, this is the first public corpus de-
signed to investigate the problem of suppressing known audio in-
terferences prior to the application of a speech recognition system.
The corpus comprises both a very realistic simulated data set and
a large set of real audio signals, consisting of high-quality sample-
synchronous recordings.

The simulated and real data sets were developed to address
three main scenarios: a) when the user interrupts the dialog man-
ager prompt while no other interferers are active; b) when the user
speaks while the TV is on, and c) the combination of a) and b). To
address each of these situations, three state-of-the-art AEC tech-
niques, i.e. Subband-based Acoustic Echo Cancellation (SAEC)
[12, 13], Frequency Domain Adaptive Filtering (FDAF) [14] and
Semi-Blind Source Separation (SBSS) [15] were applied in order to
establish the corresponding ASR performance baselines. The aim
of acoustic echo cancellation is to remove the contribution of the
overlapping sources. Although in the literature AEC performance
is generally reported in terms of objective measurements such as
the Echo Return Loss Enhancement (ERLE) or other misalignment
metrics [16], the task proposed here is addressed based on evaluating
each technique through its impact on ASR performance, i.e., on the
resulting Word Error Rate (WER). Two well-known beamforming
tools, BeamformIt [17] and mdm [18] were also used to investigate
the case of a multi-microphone input combined with AEC and the
speech recognition chain.

2. THE DIRHA AEC CORPUS

This section provides an introduction to the DIRHA AEC corpus.
In Sec. 2.1 we describe the multi-microphone experimental setup
adopted to develop the corpus, while Sec. 2.2 and 2.3 detail the sim-
ulated and real data sets.

2.1. The Experimental Setup

In the DIRHA project, a microphone-equipped apartment is avail-
able for experiments as well as for the development of a real-time
prototype. The flat comprises five rooms which are equipped with
a network of several microphones. This study focuses on the mi-
crophone network in the living room (shown in Fig. 1) which in-
cludes three pairs of sensors and one triplet installed on the walls
and a ceiling array with six microphones. All these sensors are high-
quality omnidirectional condenser microphones (SHURE MX-391).
An additional harmonic array, developed under the DICIT project
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Fig. 1. The multi-microphone experimental setup adopted for simu-
lated and real data in the DIRHA living room environment. Squares
and arrows show impulse response positions and directions available
for simulation purposes, dark blue ones indicate positions and direc-
tions used for real recordings.

Fig. 2. A picture of the DIRHA living room, showing a pair of wall
microphones and the ceiling and DICIT arrays.

[19] and composed of 13 omnidirectional electret microphones, is
located above the television.

Within the microphone pairs and triplets, individual sensors are
at a distance of 30 cm. In the ceiling array five microphones are ar-
ranged in a star configuration at a distance of 30 cm to the central
one. The linear harmonic DICIT array is based on a total distance
between the first and last microphones of 192 cm with the spacing
between the 13 sensors progressively halved towards the centre. To
allow the study of cross-room propagation effects, 13 microphones
were installed in the adjacent kitchen, featuring the same geometry
as in the living room. Finally, a close-talking microphone was worn
by each speaker in order to compute standard AEC metrics such as
ERLE. Therefore, the close-talking microphone and clean versions
of all the known interferences (i.e. the TV and prompt) are included
in both the real and simulated data sets. A total of 42 channels of
audio data are available for single and multi-microphone AEC ex-
periments. Each room in the DIRHA appartment is equipped with a
ceiling loudspeaker which enables the dialog with the user.

The mean reverberation time (T60) of the living room is 0.77 s,
indicating that the acoustic characteristics are quite challenging for

ID Sources Overlap [%] Commands
Sim-S0 Cmds 0 450
Sim-S1 Cmds + Prompt 20 450
Sim-S2 Cmds + TV 100 450
Sim-S3 Cmds + Prompt + TV 20 / 100 450
Real-S0 Cmds 0-20 650
Real-S1 Cmds + Prompt 50-100 650
Real-S2 Cmds + TV 100 650
Real-S3 Cmds + Prompt + TV 50-100 / 100 650

Table 1. Main features of the adopted simulated and real data
sets. The column Sources indicates possible additional known in-
terferences, Overlap reports the percentage of overlap between the
speaker and the interferer activities, while Commands refers to the
overall number of speech commands available in the data set.

distant-talking speech processing. Table 1 summarises the main fea-
tures of the simulated and real corpora, characterised by a sampling
frequency of 48 kHz and a 16 bit accuracy. The SNR of the speech
commands to the background noise is approx. 20 dB and 0 dB to
the interferences. Note that all the microphone signals are sample-
synchronised, based on a common clock transmitted to a set of pro-
fessional audio cards (OCTAMIC RME II).

2.2. Simulated Data

The DIRHA AEC corpus presented here is an extension of the ex-
isting DIRHA simulated corpora [8, 9] which are multi-microphone,
multi-room and multi-language databases consisting of several
domestic acoustic scenarios. In contrast to the other simulated
databases, the DIRHA AEC corpus is specifically designed for
acoustic echo cancellation and is currently available in Italian. The
simulated corpus has been generated using a technique capable of
reconstructing multi-microphone signals of typical acoustic sce-
narios in a very realistic manner. As in [8], a set of high-quality
multi-microphone impulse responses measured in a target environ-
ment [20, 21]; a collection of clean speech and non-speech signals
recorded in a professional studio; and different background noises
recorded in the DIRHA living room have been combined to generate
the simulated data set.

A simple acoustic scene involving a speech signal s(t) over-
lapped with a TV signal x(t) can be simulated as

d(t) = s(t) ∗ hs(t) + x(t) ∗ hx(t) + w(t). (1)

The simulated signal d(t) is obtained by convolving s(t) and
x(t) with the impulse responses corresponding to the speaker po-
sition hs(t) and TV position hx(t), with w(t) being a background
noise recorded in the target environment.

The complete multi-microphone simulated data set consists of
100 acoustic simulations (called scenes) of 60 seconds each, involv-
ing a total of 30 speakers (15 males and 15 females). Each acous-
tic simulation is composed of a variable number (ranging from 3
to 6) of short speech commands, uttered in one of 74 predefined
positions/orientations (see Fig. 1). Each simulated acoustic scene
is replicated in four different scenarios of increasing complexity.
In the simpler scenario (Sim-S0), each acoustic scene consists of
speech commands without any overlapping interference, while the
other three more challenging scenarios are based on the same com-
mands progressively overlapped with a prompt speech signal emit-
ted by a loudspeaker (Sim-S1), a TV signal (Sim-S2) and both of
these (Sim-S3). A comprehensive annotation and documentation is
provided for each simulated scene, i.e. an XML annotation file is
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available for each microphone detailing all sequences and their sim-
ulation conditions. The annotation format is compliant with the pre-
vious multi-microphone data sets generated in the DIRHA project
and is described in detail in [8].

2.3. Real Data

In addition to the simulated data, a corpus of real data has also been
recorded. This corpus was acquired under similar acoustic condi-
tions and in the same living room environment used for the sim-
ulated data set. The real recordings involved asking 13 speakers
(6 males and 7 females) to read a list of 50 commands in five differ-
ent positions/orientations in the room (indicated by the blue squares
in Fig. 1). As in the simulated sequences, all the commands were
repeated with no overlapping sources (Real-S0), an overlap with a
prompt (Real-S1), an overlap with the television (Real-S2) and with
both overlaps (Real-S3). All the real sequences were manually an-
notated by an expert.

3. AEC AND BEAMFORMING

We performed baseline front-end processing for automatic recogni-
tion of the commands given by the speaker in the above scenarios.
This comprised both acoustic echo cancellation (see Fig. 3) to sup-
press the known interferences and delay-sum beamforming (BF) to
enhance the speech captured by distant microphones. We did not im-
plement an optimised combination of AEC and BF [22, 23, 24, 25]
but only considered a simple connection of both components which
we called “AEC first” and “BF first”. In the former case, an AEC
is needed for every microphone channel, yielding good performance
but at a high computational cost. In the latter case, the computational
cost is lower, but the time-variability of the adaptive beamformer re-
duces the effectiveness of the downstream AEC [26] (in practice, this
solution is generally adopted only in the case of fixed beamformers).

Before applying front-end processing all the signals were down-
sampled from 48 kHz to 16 kHz sampling rate.
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Fig. 3. Principle of acoustic echo cancellation. x is the known sig-
nal emitted by a loudspeaker (prompts reproduced by the DIRHA
system, or TV audio), v is the speech component captured by the
microphone and w is the environmental noise.

3.1. Acoustic Echo Cancellation

The three AEC techniques explored in this work are characterised as
follows:

• SAEC: Subband-based Acoustic Echo Cancellation (SAEC)
was implemented using analysis/synthesis filter banks and
the well-known time-domain NLMS (normalised least mean

square) adaptation in each subband. Non-critically sampled
filter banks were employed in order to avoid aliasing effects.
High computational efficiency suitable for real-time imple-
mentation – also in the case of long impulse responses –
was achieved by using uniform DFT filter banks based on a
lowpass prototype, modulation through FFT and polyphase
decomposition [27]. In each subband the NLMS adaptation
step was controlled using the “delay coefficient” method
[12, 13].

• FDAF: Frequency Domain Adaptive Filtering (FDAF) is the
standard frequency-domain FIR adaptive filter algorithm with
frequency-bin step size normalisation [14] characterised by
computationally efficient block processing and fast and uni-
form convergence across frequencies.

• SBSS: Semi-Blind Source Separation (SBSS) is an extension
of the BSS paradigm in order to include a priori knowledge
as a constraint in its demixing adaptation. We tested an SBSS
algorithm implementing frequency-domain BSS based on In-
dependent Component Analysis (ICA), with a constraint on
the reference signals, i.e. the known echo source signals to
be cancelled [15]. A robust fast convergence behaviour was
obtained by applying scaling normalisation to the constrained
natural gradient. This method is particularly interesting as it
can tackle the combined problems of multi-channel AEC and
source separation.

3.2. Acoustic Beamforming

In order to enhance the speech of the user and obtain an improved
SNR we adopted standard delay-sum techniques, namely the open
source BeamformIt (bfi) toolkit1 [17] and the mdm tools developed
in the AMI project [18]. Both use GCC-PHAT for TDOA estimation
[28] and employ these values for delay-sum beamforming. Beamfor-
mIt applies sophisticated TDOA smoothing, resulting in improved
recognition, as previously shown in [29] and [30].

4. EXPERIMENTS

In the experiments described in what follows, front-end processing
was applied to the six microphones of the ceiling array. Note also
that oracle voice activity detection (VAD) was used to assess the per-
formance of our system, thus avoiding a further source of variability
in the ASR performance.

4.1. ASR system and Task

The speech recognition system adopted in this work is a standard
HMM-GMM system based on the HTK toolkit [31]. The speech
signal is blocked into frames of 25 ms with 10 ms time shift af-
ter which 12 Mel-frequency Cepstral Coefficients (MFCCs) plus the
log-energy are extracted.

For the acoustic model, similarly to [32], a set of 26 phone-like
units of the Italian language was chosen. Each unit is modelled with
a three-state left-to-right continuous density HMM, with mixtures
of 128 Gaussian components for each state. The acoustic model
was trained using the phonetically-rich APASCI database [33] which
was contaminated using a single impulse response measured in the
DIRHA living room, as proposed in [32].

The decoding was performed based on a small command recog-
nition task (390 words) using a bigram language model trained on a

1http://www.xavieranguera.com/beamformit/
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Corpus Close-Mic Single Far-Mic Beam-bfi Beam-mdm
Sim-S0 9.7 33.1 26.2 31.3
Sim-S1 9.7 47.8 39.5 39.5
Sim-S2 9.7 61.3 57.6 60.4
Sim-S3 9.7 70.0 67.2 67.1
Real-S0 12.6 39.4 36.1 38.0
Real-S1 11.6 68.0 56.3 64.3
Real-S2 18.0 72.1 48.6 52.9
Real-S3 13.2 77.0 65.6 67.2

Table 2. WER [%] results without acoustic echo cancellation.

small text corpus of typical commands given in a domestic environ-
ment.

4.2. Results and Discussion

In this section we report experimental results from using the different
AEC and beamforming techniques mentioned in Sec. 3 and from
different types of known interferences that overlap with the targeted
speech input.

Table 2 which gives baseline results obtained without applying
any AEC technique, shows a dramatic decrease between the perfor-
mance of a close-talking microphone compared to a single distant
microphone. A general trend of decreasing performance from Sim-
S0 to Sim-S3 can also be observed due to the increased difficulty of
the task, as described in Sec. 2. The results with the real data show
a similar trend, although with a general reduction in performance,
except for the Real-S2 data set. This is due to the SNR of the TV
audio output being 6 dB, and not 0 dB as defined earlier and used
in the simulations (Sim-S2). Note also that beamforming techniques
without AEC do not produce a significant improvement for various
reasons, such as the relatively limited number of microphones and
the frequent switching of the beam from the speech source to the
interferer and back. In addition, Beam-bfi generally outperforms
Beam-mdm. For this reason only Beam-bfi results will be reported
in what follows.

Table 3 shows the results obtained using each AEC technique
on a single input channel (i.e. the central channel of the ceiling ar-
ray). The real data again show a lower performance than the simu-
lated data due to the smaller overlap of the commands and prompts
in the latter data set. More importantly, the AEC processed output
performs significantly better than that obtained from a single dis-
tant microphone input (compare Table 3 with the second column of
Table 2).

Note that the performance of SBSS is lower compared to the
other AEC methods for the datasets Real-S1 and Real-S3. Each AEC
method has different timing requirements for its internal filter adap-
tation. The nature and length of speech overlap affects AEC perfor-
mance. SBSS requires larger blocking for adaptation and therefore
fails to match the other AEC methods for short adaptation times.

Corpus SAEC FDAF SBSS
Sim-S1 34.9 35.6 34.5
Sim-S2 40.6 36.8 36.7
Sim-S3 45.0 40.4 40.5
Real-S1 36.9 42.1 55.9
Real-S2 42.0 43.5 41.8
Real-S3 47.0 48.3 59.5

Table 3. WER [%] performance for single-channel acoustic echo
cancellation.

BF first AEC first
Corpus SAEC FDAF SBSS SAEC FDAF SBSS
Sim-S1 31.1 32.9 30.7 26.0 26.0 26.1
Sim-S2 42.4 40.3 39.6 30.8 27.2 29.7
Sim-S3 51.6 50.2 46.7 34.6 30.1 31.2
Real-S1 34.7 39.5 48.4 25.9 30.0 41.3
Real-S2 36.1 38.7 34.9 31.5 31.4 30.8
Real-S3 49.5 48.1 50.2 34.9 34.9 45.0

Table 4. WER [%] performance for multi-channel acoustic echo
cancellation.

Table 4 shows results from the joint use of beamforming and
AEC in the two configurations referred to as “BF first” and “AEC
first”. The latter always gives significantly better performance, in
line with what is reported in the literature and was reviewed in Sec. 3
[22, 23, 24, 25, 26].

As expected, this combined processing (in particular the “AEC
first” option) outperforms that of single processing alone as shown
in Tables 2 and 3. Overall our proposed “AEC first” scheme achieves
less than 30% WER on both the simulated and real data.

5. CORPUS RELEASE

The ASR system scripts used for evaluation purposes and a portion
of the corpus will be made available on the DIRHA website. Some
short examples can be already downloaded from http://dirha.
fbk.eu/DIRHA_AEC. The full simulation data set and a portion
of the real data will then be the object of a further public distribution
to allow other researchers to reproduce baseline results and report on
new techniques.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new corpus of multi-channel audio data
to study distant-speech recognition systems when known interfer-
ing sounds are propagating in the environment. The corpus has been
used to produce a set of ASR baseline results and analyse the combi-
nation of a speech recognition engine, beamforming and AEC tech-
niques. Recognition performance achieved using a distant-talking
command task in the real application scenario of the DIRHA project,
shows the benefit which can be obtained with a suitable front-end
processing. This needs to be further investigated in a joint optimisa-
tion perspective.

The corpus is being extended to other languages, including En-
glish, and part will be made available at public level along with the
other DIRHA corpora.
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