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ABSTRACT
We investigate the use of deep neural nets (DNN) to provide ini-

tial speaker change points in a speaker diarization system. The DNN
trains states that correspond to the location of the speaker change
point (SCP) in the speech segment input to the DNN. We model
these different speaker change point locations in the DNN input by
10 to 20 states. The confidence in the SCP is measured by the num-
ber of frame synchronous states that correspond to the hypothesized
speaker change point. We only keep the speaker change points with
the highest confidence. We show that this DNN-based change point
detector reduces the number of missed change points for both an En-
glish test set and a French dev set. We also show that the DNN-based
change points reduce the diarization error rate for both an English
and a French diarization system. These results show the feasibility
of DNNs to provide initial speaker change points.

Index Terms— Deep Neural Networks, DNN, change point de-
tection, speaker diarization.

1. INTRODUCTION

Audio or speaker change point detection is the process of locating
time points (or frames) in an audio stream that correspond to a tran-
sition from one speaker to another, or from music to speech or vice-
versa. These change points have many uses including speaker di-
arization, as clues to possible scene changes in scene analysis, for
tracking speakers in a conversation, etc. When the speaker change
point detector is part of a speaker diarization system, the goal in
general is to use a fast change point detector that may have many
false alarms but works well enough that down stream processes (like
BIC or GMM based cluster merging [1][2][3][4][5][6]) can merge
homogeneous audio segments and eventually lead to a good speaker
diarization system.

The basic principle of a fast audio change point detector is to
use a short duration window of a few seconds and use a similarity
measure to decide whether the midpoint of this window is a poten-
tial speaker change point. We then slide this window frame by frame
over the entire audio to mark all the potential speaker change points.
Some examples of the metrics used to classify the window as a po-
tential change point is symmetric KL2 distance metric [3], Gener-
alized likelihood ratio [4], a local Gaussian divergence measure [1]
[2]. In [7], the authors train an autoassociative neural net on the left
half of the window (of 1 sec duration) to model the distribution of
features in this segment. They then score the right side of the win-
dow and use an error threshold to classify whether the mid point of
the window is a change point or not. All these methods segment
audio into 2 to 3 second segments on an average by controlling a
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threshold value. The idea is to minimize miss rate for the correct
change points. The false alarms can be reduced later by the BIC and
GMM-based clustering processes downstream.

In [8], the authors use a Gaussian mixture model (GMM) ob-
tained by adapting the speech segment to a universal background
model, and a cross likelihood ratio to segment audio (instead of a
KL2 distance metric or a generalized likelihood ratio or a local di-
vergence measure). Their goal was to produce as accurate a change
point detector as possible. In most multi-stage speaker diarization
systems [1] [2] [4] [5], the GMM clustering stage occurs later on
when the clusters are larger and the GMM clustering is much more
effective.

Like the systems in [1] [2] [4], we also use a fast change point
detector (CPD). This CPD is based on a symmetric KL2 distance
metric [5] that quickly generates potential speaker change points.
Consecutive change points belonging to the same speaker are then
merged using BIC clustering, followed by further refined clustering
stages that include GMM-based clustering. This initial change point
detector was also the input to the single Gaussian based modified
BIC algorithm that gave competitive speaker diarization results [6]
in the ETAPE evaluation of French broadcast audio [9].

The idea in this paper is to replace this fast change point detector
using a deep neural net (DNN). We train the DNN with short speech
segments around the speaker change points from both English and
French broadcast audio. We show that the speaker change points
generated by the DNN miss fewer speaker change points and lead to
a reduction in the overall diarization error rate.

2. ACOUSTIC TRAINING AND TEST DATA

The training audio for DNNs comes from both French and English
broadcast audio. The French broadcast audio consists of 44 different
broadcasts from ETAPE training data [9] for a total of 26.4 hours
of audio. The English data comes from 114 files from 1997 Hub4
English broadcast news training data (97 hours in total). These au-
dio files were chosen because they have been well segmented into
speaker turns. The validation set for DNN training was created by
excluding 2 English training audio files and one French training au-
dio file from the training set.

For the French test set, we used the ETAPE development set
that consists of 15 files of 10 minutes to 1 hour in duration for a total
duration of 8.6 hours. The audio files were recorded from French
radio and TV programs. These programs contained both broadcast
news and talk shows. Roughly 6.7 hours of these audio files were
well segmented into speaker turns so that we could measure both the
diarization error rate, and the false alarm and miss rate of the speaker
change point detector.

For the English test set, We used the 6 audio files from RT 2002
English evaluation data (files bn02en 1 through bn02en 6) since they
had good transcription of speaker turns (4.5 hours in total).
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All the training and test audio was downsampled to 8KHz in
order to use the diarization system in an internet-based transcrip-
tion system where the audio can come from mobile or land-line tele-
phones or from skype or other similar applications connected to the
internet using arbitrary microphones. The downsampling increased
the diarization error rate (DER) for the French ETAPE Dev set from
13% to 22%, while the DER for the English test set went down from
15% to 13%.

3. SPEAKER CHANGE POINT DETECTION USING DNN

In our current change point detector (CPD) [5], we take a 1.5 second
window on either side of the change point and estimate a KL2 dis-
tance metric. We estimate this metric for every frame of the audio.
The CPD algorithm then looks for a maximum of this KL2 distance
metric in these overlapping 1.5 sec windows, and classifies this max-
imum as a potential change point if it exceeds a distance threshold.

In the case of the deep neural net (DNN) used for CPD, we actu-
ally train the DNN so that the output states of the DNN correspond to
the presence or absence of a speaker change point in the speech seg-
ment input to the DNN. So during DNN training, each frame needs
to be labeled in a way that we can later decode the speaker change
point with a reasonable precision. If we just label the frames that
contain the actual change point as state 0 and the rest of the frames
as state 1, then this strategy leads to a very sparse state 0. Dur-
ing scoring with the DNN trained in this fashion, every frame gets
labeled with state 1. In order to get reasonable frequency of occur-
rence of states corresponding to speaker change points, we modified
the state labeling as follows.

Let us assume that we input 15 frames to the DNN as shown in
Fig. 1. We divide this input into 5 segments of 3 frames each. If the
actual speaker change point (CP) falls in the first segment, we label
the output state corresponding to the current DNN input as state 0,
if the CP falls in the second segment, we label the output state cor-
responding to the current input as state 1,..., and if the CP falls in
the last segment then we label the output state as state 4. If there
is no change point in the 15-frame input to the DNN, then the cor-
responding output state is 5. In this example, we train a DNN with
15 input frames and 6 output states. In this scenario, each state con-
taining the CP occurs three times as frequently, and we can increase
the confidence in the change point by looking for frame sequential
occurrence of state 4 three times, followed by state 3 three times,...,
followed by state 0 three times. (Note that the states will occur from
4 to 0 as we move the DNN over the audio from left to right).

15-frame
input to DNN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

state 0 state 1 state 2 state 3 state 4

current
change point

(output state 3 )

Fig. 1. 15-frame input to DNN illustrating how output state is as-
signed to this DNN input during DNN training. In this example, the
speaker change point corresponds to frame 10, so the output state is
3. If there was no speaker change point inside these 15 frames, then
the output state assigned would be state 5.

During search for speaker change points, we compute the for-
ward scores through the DNN frame by frame. For each frame, we
find the output state with the maximum a posteriori likelihood. We
then label the frame with the label of this output state. In an ideal

scenario, the output state sequence around a change point will look
like:

“...5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 5 5 5 ...”
Note that in this example, state 2 corresponds to the change point

in the center of the input to the DNN. The change point location
accuracy in our case is +/- 3 frames or 30 msec. (Note that frame
advance is 10 msec). However, in the ideal case (as in the example
above), we assume that the change point is at the center frame of the
sequence of frames labeled with state 2. In this case, the CP location
accuracy is +/- 1 frame advance (or 10msec). In order to associate a
confidence measure with the change point, we add up all the frame
synchronous states around a sequence of frames labeled with state
2. For example, in the example above, the confidence count is 15
(we only count states 0 through 4). So in the following sequence of
frames labeled with the closest states, the confidence count is 8. The
frames that contribute to the confidence count are labeled with a 1 in
the 0-1 sequence shown below the state sequence.

“...5 4 5 3 4 5 3 0 3 2 2 2 0 3 1 0 3 5 5 5 5 ...”
“...0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 ...”
In the real scenario, we tried two different strategies. In the first

one, we input 101 frames to the DNN (center frame +/- 50 frames)
and divide 101 frames into 9 states (16, 10, 10, 10,10,10, 10, 10, 15).
In other words, if the change point falls in the first 16 frames input to
the DNN, then the output state is 0, if CP falls in the next 10 frames
then the output state is 1, ..., and if the CP falls in the last 15 frames
(of the 101 frame window) then the output state is 8. Output state 9
corresponds to input frames with no change point. So the maximum
confidence count can be as high as 101.

In the second strategy, we input 201 frames to the DNN (center
frame +/- 100 frames), and these 201 frames are divided into 19
states depending on where the change point falls in these 201 frames:
first 16 frames, next 10 frames, ..., last 15 frames. The output state
20 corresponds to input frames without any change point inside it.

For both these strategies, during decoding, we first look for a
sequence of at least 3 frames labeled with the center state (state 4
in the first strategy and state 9 in the second strategy). We assume
that the CP is at the center frame of this sequence of frames, and add
all the frame synchronous output states from this center frame, and
assign this sum as the confidence value of this change point. This
confidence value is later used as a threshold to accept or reject the
change point.

4. TRAINING THE DNN FOR CHANGE POINT
DETECTION

We train the DNN from all the training data (26 hours of French
audio and 97 hours of English audio). During training, for every se-
quence of frames input to the DNN, we need the corresponding DNN
output state. These output states are input to the DNN through align-
ment files in Kaldi [10]. The training audio is already marked with
speaker change points through corresponding transcription files. We
use these known change points to generate alignment files (in Kaldi
format) that contain sequence of states (one output state per frame)
as explained in Sec. 3. In most cases, there were only 0 or 1 change
points in any given sequence of frames input to the DNN during
training. However, in a few cases, there was more than one change
point in the sequence of frames input to the DNN. In this case, the
identity of the DNN output state label was based on the change point
closest to the center frame.

We initially trained the DNN with the entire 123 hours of train-
ing audio (26 hours of French and 97 hours of English). This
data contains a total of 27,500 change points, or approximately one

4421



change point every 16 seconds. In this training scenario, for the first
strategy with 10 output states, state 10 (no change point in the win-
dow) occurs 140 times more frequently than the other states. In the
second strategy with 20 output states, state 20 (no change point in
the window) is 120 times more frequent than the other states. The
result of training DNN with such a biased training data is that during
decoding, only state 10 (or 20 for the second strategy) shows up as
the state with the highest likelihood for virtually all the test frames.

In order to balance the occurrence of different states, we trained
the DNN only with the frames within 1.1 secs of each change point
for the first strategy (with 10 output states). In this scenario, state 10
is only about 10 times more frequent than the other states. However,
the total training audio is reduced from 123 hours to 16.8 hours.
In the second strategy (with 20 output states), we train the DNN
with the frames within 2.1 secs of each change point. In this case,
state 20 is about 20 times more frequent than the other states, while
the training audio is reduced to 32 hours. In these scenarios, we
were able to train the DNNs and get reasonable CPD results. The
validation data was also similarly modified. So the validation data
contains only 1.1 secs of audio on each side of a change point (1st
strategy) or 2.1 secs of audio on each side of a change point (2nd
strategy).

To get good CPD accuracy, we tried different architectures for
the DNNs, varying from 2 to 5 hidden layers and from 50 to 1000
neurons per hidden layer. It was only possible to train DNNs with
2 hidden layers starting from random initialization of weights. The
DNNs with more than 2 hidden layers were trained by first training a
DNN with 2 hidden layers, then iteratively adding one more hidden
layer with random initialization and then retraining the DNN. The
DNNs between 3 and 5 hidden layers with between 400 and 1000
neurons gave good CPD accuracy. With the fully trained DNN, the
frame accuracy for the validation data varied between 55% and 62%.

We tried two different feature parameters: cepstrum and delta
cepstrum as one feature set, and TRAP features [11] as another fea-
ture set. The cepstrum + delta cepstrum based features gave signifi-
cantly worse results than the TRAP features. To compute the TRAP
features, we first normalize the 23-dimensional filterbank features to
zero mean per audio file. For the first strategy, 101 frames of these
23-dimensional filterbank features (50 frames on each side of cur-
rent frame) are spliced together to form a 2323-dimensional feature
vector. This 2323-dimensional feature vector is transformed using a
hamming window (to emphasize the center), passed through a dis-
crete cosine transform and the dimensionality is reduced to either
23*20 or 23*40 or 23*60. The number 20, 40 or 60 is the num-
ber of DCT values we keep when we take the cosine transform of
each feature in the 101 frame window. It turns out that 40 works
the best in the first strategy (with 101 frame window), and a value
of between 60 and 100 works better in the second strategy with a
201 frame window. So in the first strategy, the input feature vector is
920-dimensional (23*40) and in the second strategy, the feature vec-
tor is either 60*23 dimensional or 100*23 dimensional. This feature
vector is globally normalized to have zero mean and unit variance.
This normalized feature vector is then input to the DNN. The feature
vector is advanced by one frame every time. Even though we train
each DNN with both the English and French training data together,
the same DNN did not give the best CPD results for both English
and French.

5. CHANGE POINT DETECTION RESULTS WITH DNN

The speaker change points are found by scoring each frame with the
DNN to find the output state posterior likelihoods. The input to the

DNN is the TRAP features computed from this frame together with
+/- 50 frames (in the first strategy) or with +/- 100 frames (in the sec-
ond strategy) as outlined in the previous section. This frame is then
given the label of the output state with the highest posterior likeli-
hood. This frame labeling process converts the frame sequence into
an output state sequence. We then look for a contiguous sequence
of the output state corresponding to the change point in the center
of the window. In the first strategy (with 10 states), we look for a
contiguous sequence of state 4 with a minimum run of 3. The center
of every such run is marked as a potential change point. The confi-
dence corresponding to each potential change point is also computed
as outlined in Sec. 3.

We then compute the miss rate and the false alarm rate for the
change points at a specified confidence threshold. The miss rate is
the percentage of actual change points missed. An actual change
point is missed if there is no change point within 0.25 seconds of this
actual change point. Similarly, we compute false alarms as change
points that are not within 0.25 secs of any actual change point.

The DNN that gave the best results for the English test set (from
RT 2002) corresponds to DNN trained with strategy 1 (with a total of
10 output states) has 3 hidden layers with 1000 neurons per hidden
layer and sigmoid non-linearity in each hidden layer, one input layer,
and one softmax output layer. The TRAP features input to the DNN
have 23x40 values (keep 40 DCT values out of 101) computed from
a window of 101 frames (center frame +/- 50 frames). The English
test set has a total duration of 3445 secs (or 57.4 mins) with 183
change points or roughly one change point per 19 secs.

Table 1 gives the miss rate and the false alarm rate per min at
different confidence thresholds. We measure the false alarm rate by
average number of false alarms per minute. We compare these per-
formance figures with the change point detector using KL2 metric
in our multi-stage diarization system [5] used during ETAPE eval-
uation. The false alarms and the the miss rate for this KL2-metric-
based change point detector are shown in Table 2. As we can see
from the two tables, the miss rate at the same false alarm rate is
significantly lower for the DNN-based change point detector.

Table 1. Percentage missed and false alarm rate/min for DNN-based
change point detector for English test set.

conf thresh 0 10 20 30 40 50
% missed 11 12 16 24 31 43

false alarms/min 29.3 26.9 22.7 18.5 13.7 9.6

Table 2. Percentage missed and false alarm rate/min for KL2-
metric-based change point detector for English test set.

% missed 60
false alarms/min 33.0

The DNN that gave the best results for the French Dev set (the
French Dev set for speaker diarization during ETAPE evaluation in
2011) corresponds to DNN trained with strategy 1 (with a total of
10 output states), has 5 hidden layers with 400 neurons per hidden
layer and sigmoid non-linearity in each hidden layer, one linear input
layer, and one softmax output layer. The TRAP features input to the
DNN have 23x40 values (keep 40 DCT values out of 101) computed
from a window of 101 frames (center frame +/- 50 frames). The
French dev set has a total duration of 24354 secs (or 6.765 hours)
with 2214 change points or roughly one change point per 11 secs.
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The French dev set is more difficult than the English test set as it
contains both broadcast news and talk shows. The talk shows have
short speaker turns, speaker overlaps and speech with music seg-
ments and background audience noise.

Table 3. Percentage missed and false alarm rate/min for DNN-based
change point detector for French dev set.

conf thresh 0 10 20 30 40 50
% missed 26 29 36 43 52 62

false alarms/min 40.0 35.8 30.0 24.3 19.1 13.6

Table 4. Percentage missed and false alarm rate/min for KL2-
metric-based change point detector for French dev set.

% missed 75
false alarms/min 32

Table 3 gives the miss rate and the false alarm rate per min at
different confidence thresholds. We compare the performance fig-
ures in Table 3 with the change point detector using KL2 metric
embedded in our multi-stage speaker diarization system. The false
alarms and the miss rate for this KL2-based change point detector are
shown in Table 4. As we can see from the two tables, the miss rate
at the same false alarm rate is significantly lower for the DNN-based
change point detector.

6. SPEAKER DIARIZATION USING CHANGE POINTS
FROM DNN

In order to evaluate the speaker diarization performance of the
change points obtained from the DNNs, we substituted the change
points from the KL2 metric in our speaker diarization system by
the change points from the DNNs. The two diarization systems are
shown side by side in Fig. 2. The left side of the figure uses the
KL2 metric for change point detection while the right side uses the
change points from the DNNs. The rest of the flowchart is kept ex-
actly the same. We do adjust the various thresholds in order to get
minimum DER.

For the change points from the DNNs, we adjusted the confi-
dence threshold per audio file to get one false alarm per n secs of
audio for each file. Table 5 shows the diarization error rate (DER)
for the English test set with varying n, while Table 6 shows the DER
for the French dev set with varying n. We see that at n = 2.4, the
DER for English test set goes down from 12.91% (for KL2-based
CPD) to 12.51% (for DNN-based CPD), and for French dev set the
DER goes down from 21.95% (for KL2-based CPD) to 21.12% for
the DNN-based CPD. The reduction in DER is small probably due
to the limitation of the GMM-based agglomerative clustering algo-
rithm.

Table 5. Variation in diarization error rate (DER) with n for the
English test set. The DER with the KL-2 based change point detector
is 12.91%

n 2.2 2.3 2.4 2.5 2.6 2.8 3.1
DER 12.8 12.65 12.51 12.52 12.58 12.76 12.85
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Fig. 2. The multi-stage speaker diarization system using KL2 metric
as the change point detector is shown on the left, while the speaker
diarization system using the DNN-based change point detector is
shown on the right.

Table 6. Variation in diarization error rate with n for the French test
set. The DER with the KL-2 based change point detector is 21.95%

n 2.3 2.4 2.5 2.6
DER 21.63 21.12 21.15 21.31

7. CONCLUSIONS

We have shown that we can train DNNs to locate speaker change
points that can be used as a starting point in a speaker diarization
system. Compared to a change point detector using a KL2-based
metric, these change points have a lower miss rate at the same false
alarm rate. The key to training reasonable DNNs for change point
detection is to associate output states with the location of the change
points within the frames input to the DNN, and to train the DNN
with only the audio around the speaker change points. We also show
that substituting the change points from KL2 metric by the change
points from DNNs for speaker diarization results in a lower DER for
both an English and a French diarization system.

Currently, the DNNs for change point detection are trained with
only a small amount of acoustic data (16.8 hours). The reason is that
we can only train from audio around the speaker change points. We
plan to increase this data significantly in order to see its effect on
change point detection. Any significant results from these experi-
ments will be reported at the conference.
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