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ABSTRACT

In this paper, we present a time-frequency (TF)-dependent
a priori speech absence probability (SAP) estimator utiliz-
ing the magnitude square coherence (MSC) between two
microphone signals. It is shown that the normalized SNR
can be numerically computed from the MSC by solving a
quadratic equation. Based on the fact that the normalized
SNR is bounded between 0 and 1, we directly use it for the
probability of speech absence in each TF-unit. Since this
approach does not require prior statistical knowledge of noise
and speech, it is not affected by the performance of the noise
PSD estimator. Furthermore, unlike the conventional SNR-
based estimator, additional mapping strategy is unnecessary.
The algorithm was evaluated using the receiver operating
characteristic (ROC) curve and it attained higher correct de-
tection rate at a given false-alarm rate than the conventional
algorithms.

Index Terms— speech presence probability, speech ab-
sence probability, magnitude square coherence

1. INTRODUCTION

The speech presence probability (SPP) estimator plays an im-
portant role in the performance of the speech enhancement
system. A general SPP estimator can be derived under the
assumption that the spectral coefficients of speech and noise
can be modeled as complex Gaussian random variables [1].
A posteriori SPP is computed per time-frequency (TF) unit in
the short time Fourier transform (STFT)-domain based a pri-
ori and a posteriori SNRs and a priori speech absence prob-
ability (SAP).

Since theoretically, a priori SAP does not depend on the
observation, it can be set as a fixed value [1, 2, 3]. The estima-
tor presented in [2] is an example of the single-channel SPP
estimator employing a fixed a priori SNR and SAP. How-
ever, in practice, it can be assumed that the SAP is varying
with time and frequency, depending on the words spoken [3].
Hence, it is more appropriate to estimate the a priori SAP in
each TF-unit instead of using a fixed value.

Several algorithms have been proposed to estimate and
update a priori SAP. The well-known single-channel soft de-

cision approach was established in [4], where it was used
that the neighboring frequency bins of consecutive frames in
the speech presence region have high correlation. A similar
approach was applied to the multichannel system in [5], by
taking into account the local and global variations of SNR.
In these approaches, the estimated SNRs were averaged and
mapped onto a value between zero to one to use it as an esti-
mate of SAP. However, although SNR is a strongly correlated
with SAP, the accuracy of the obtained SAP is highly affected
by the noise estimation performance and the mapping func-
tion. Recently, another multichannel a priori SAP estimator
was proposed in [6] where an estimate of the direct to diffuse
ratio (DDR) was utilized. Since this estimator does not re-
quire statistical information of noise or speech, the detection
accuracy is decoupled with the noise estimation performance.
However, it still requires a mapping function to obtain an SPP
estimate.

In this paper, we propose a priori SAP estimator based on
the magnitude square coherence (MSC) of the dual-channel
microphone signals. We show that the normalized SNR can
be obtained from MSC by solving a quadratic equation. Then,
the a priori SAP is obtained directly from the estimated SNR
without an additional mapping process. As a result, the accu-
racy of the proposed a priori SAP estimator is independent of
the performance of the noise PSD estimator.

2. GENERAL SPEECH PRESENCE PROBABILITY
IN THE DUAL-CHANNEL SYSTEM

The observation signals of the dual-channel microphone sys-
tem can be represented in the frequency-domain as

Ym(k, l) = Xm(k, l) +Nm(k, l),m = 1, 2, (1)

where Xm(k, l) = S(k, l)Am(k, l), S(k, l) is the target
speech source, Am(k, l) is the acoustic path from the speech
source to the mth-channel microphone. k and l denote the
frequency bin and frame indices, respectively. Nm(k, l) are
assumed to be diffuse noise propagating in all directions
simultaneously with equal power and random phase [7, 8].
The observed signals can be written in vector notation as
y(k, l) = [Y1(k, l), Y2(k, l)]T and the PSD matrix of y(k, l)
is defined as Φyy(k, l) = E[y(k, l)yH(k, l)].
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Lets assume that H1(k, l) and H0(k, l) are two-states
hypotheses which represent speech presence and absence,
respectively. Then, under the assumption that the desired
speech and noise components can be modelled as complex
multivariate Gaussian random variables, the multichannel a
posteriori SPP estimate is obtained as [1]

p (k, l) = P [H1(k, l)|y(k, l)]

=

{
1+

q(k, l)

1− q(k, l)
[1+ ξ(k, l)]exp

[
− β(k, l)

1 + ξ(k, l)

]}−1

,(2)

where ξ(k, l) = tr[Φ−1
nn(k, l)Φxx(k, l)] denotes the a priori

SNR, q(k, l) = P [H0(k, l)] is a priori SAP and β(k, l) =
yH(k, l)Φ−1

nn(k, l)Φxx(k, l)Φ−1
nn(k, l)y(k, l).

3. PROPOSED SPEECH ABSENCE PROBABILITY
ESTIMATOR

3.1. Normalized SNR and SAP

In a recent study [9], a coherence-based noise reduction tech-
nique was proposed in a situation that a frontal target speaker
was present together with an undesired interference. The
technique utilized the real and imaginary parts of the co-
herence function between the input signals as a criterion for
estimating the normalized SNR.

The coherence between two microphone signals can be
calculated as

ΓY (k, l) =
φ12Y Y (k, l)√

φ11Y Y (k, l)φ22Y Y (k, l)
, (3)

where φijY Y = E[Yi(k, l)Y
∗
j (k, l)], i, j = 1, 2 are cross- and

auto-PSDs of the microphone signals. In [10], it was shown
that the coherence of dual-channel observations can be ex-
pressed as a weighted sum of speech and noise coherences, as
given by

ΓY (k, l) = ΓX(k, l)

(√
SNR1

1 + SNR1

SNR2

1 + SNR2

)
+ΓN (k, l)

(√
1

1 + SNR1

1

1 + SNR2

)
, (4)

where SNR1 and SNR2 respectively represent the true local
SNR of first and second microphone signals in linear scale.
Also, it was shown in [9], the SNR ratio is relatively inde-
pendent of the target direction, i.e., SNR1/(1 + SNR1) ≈
SNR2/(1 + SNR2). Therefore, we define the normalized
SNR as

G =

√
SNR1

1 + SNR1

SNR2

1 + SNR2
≈ SNR

1 + SNR
, (5)

where SNR can be either SNR1 or SNR2. It should be
noted that the normalized SNR is bounded as 0 ≤ G ≤ 1.

At higher SNR, we have G ≈ 1, and thus there is a high
probability of speech presence and vice versa. Thus, the nor-
malized SNR G is strongly correlated to the probability of
speech absence. The variable G can be computed using the
method suggested in [9]. However, it was developed under
the assumption that a target speaker is located in the frontal
direction, which is impractical in real environments. It is also
possible to modify the method in [9] for a target speaker in an
arbitrary direction. But experimental results revealed that the
accuracy of the estimated SNR is still problematic for non-
frontal target speakers. Thus, in this paper, we propose a
method of computing the normalized SNR using the MSC,
in order to achieve accurate estimates of the normalized SNR
even for the target speaker in an arbitrary direction.

By assuming a diffuse noise field, the noise coherence,
ΓN (k, l) in (4) can be replaced with a real-valued analytical
model [11]:

Γ̂N (k) = sinc

(
2πkfsd

K · c

)
, (6)

where d is the microphone spacing, K is the maximum fre-
quency bin index, fs and c ≈ 340m/s represent the sampling
frequency and the speed of sound, respectively. On the other
hand, the speech coherence function due to the speech signal
incident from angle θ can be calculated as [12]

Γ̂X(k) = ej2πkfs(d/(K·c)) sin θ. (7)

Thus by substituting (6) and (7) into (4), the observation co-
herence function can be rewritten as,

ΓY = [cos(α) + j sin(α)]G+ Γ̂N (1−G), (8)

where α = 2πkfs(d/(K ·c)) sin θ. For the sake of simplicity,
we omit frequency and frame indices.

By taking the absolute square of ΓY , we can obtain the
MSC:

ΨY = |ΓY |2 = aG2 − 2bG+ Γ̂2
N , (9)

where a = 1− 2Γ̂N cosα+ |Γ̂N |2 and b = Γ̂N (Γ̂N − cosα).
Now, the MSC can be rearranged into a quadratic equation:

aG2 − 2bG+ Γ̂2
N −ΨY = 0. (10)

The normalized SNR G can be computed by solving the
quadratic equation in (10),

G =
b±

√
Γ̂2
N (cos2 α− 1) + aΨY

a
. (11)

Since ΓY and Γ̂N can be computed using equations (3) and
(6), the normalized SNR G is readily obtained, only if the
term cosα is available. To obtain cosα, the real and imagi-
nary parts of the observation coherence in (8) are taken:

< = cosαG+ Γ̂N (1−G),

= = sinαG. (12)
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Fig. 1: The true and estimated normalized SNRs at (a) 0◦ and (b) 90◦.

After a few steps of rearrangement, the above real and imag-
inary terms can be combined into a single equation as

=(cosα− Γ̂N ) = sinα(<− Γ̂N ). (13)

Squaring both sides of (13) and using the fact that sin2 α =
1− cos2 α, we can have

(=2 + (<− Γ̂N )2) cos2 α−
2Γ̂N=2 cosα+ =2Γ̂2

N − (<− Γ̂N )2 = 0. (14)

Thus, by solving the above quadratic equation, cosα is ob-
tained as

cosα =
Γ̂N=2 ±

√
ν

=2 + (<− Γ̂N )2
, (15)

where ν = (< − Γ̂N )2(=2(1 − Γ̂2
N ) + (< − Γ̂N )2). Using

the fact that cosα should be 1 for the target at 0◦, plus sign
can be taken as the correct solution. Now substituting (15)
into (11), the normalized SNR G can be obtained. In previ-
ous studies [4, 5, 13], a mapping function was introduced to
convert the estimated SNR to the bounded. However, the nor-
malized SNRG is bounded between 0 and 1, and thus a priori
SAP can be directly approximated usingG without additional
mapping function as

q̂ = 1−G,

=
1− Γ̂N cosα−

√
Γ̂2
N (cos2 α− 1) + aΨY

a
. (16)

The accuracy of the proposed MSC-based SNR estimator is
evaluated and compared with that of the method in [9]. Fig. 1
compares the obtained SNRs for the cases of frontal (θ = 0◦)
and non-frontal (θ = 90◦) target speakers, respectively. It
should be mentioned that the method in [9] was modified to
suit it for target speakers in an arbitrary direction. The results
show that the proposed MSC-based SNR estimator provides
robust results even for the non-frontal target speaker unlike
the conventional method in [9]

3.2. Modification for Practical Consideration

In many of the previous studies [2, 4, 5], it was shown that
the combination of local and global variables, could provide
performance improvement over the use of a single variable.
Thus for the proposed SAP estimator, we combine the local
and global estimates of the a priori SAP via a multiplicative
combination, as given by

q̂(k, l) = q̂local(k, l) · q̂glob(k, l). (17)

The difference between q̂local(k, l) and q̂glob(k, l) is the num-
ber of frequency bins over which the observation coherence
ΓY (k, l) is averaged using

Γ̄Y (k, l) =
1

2 · kd + 1

k=k+kd∑
k=k−kd

ΓY (k, l). (18)

The averaging over adjacent frequency bins results in a re-
duction of random fluctuations. The range of averaging is
a trade-off between low-variance and fine-structure. In this
paper, kd = 1 and kd = 10 were used to estimate the lo-
cal and global variables, q̂local(k, l) and q̂global(k, l), respec-
tively. Fig. 2 depicts the (a) local, (b) global SAPs and (c) the
combined-SAP using (16) for a 0 dB noisy speech signal. It
can be seen that the local SAP has high variance but preserves
the fine structure of the speech spectrum. On the other hand,
the global SAP reduces the variance but has a low degree of
precision. The combination of the two positively combines
the features of the local and global SAP.

Fig. 2: The estimated (a) local SAP, (b) global SAP and (c) the combined
SAP for a 0 dB noisy speech.

4. SIMULATION

Speech sentences in TIMIT databases were extracted and bin-
aurally convolved with HRIR pairs corresponding to the tar-
get directions. Later, binaural noise signals taken from ETSI
database were added according to SNR. The noisy input sig-
nal was segmented into subframes of 512 samples with 50%
overlap using a sine window at a 16 kHz sampling rate. The
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Fig. 3: The spectra of (a) the clean, (b) noisy speech signals, SPP results obtained using (c) a fixed SAP approach [1], and the TF-unit dependent SAP
controlled by (d) the SNR-based [4], (e) the DDR-based [6] and (f) the proposed estimator in Eq. (16)

performance of the proposed SAP estimator was compared
with those of the single-channel SNR-based estimator in [4],
the dual-channel a fixed SAP based approach in [1] and DDR-
based estimator in [6]. All implementation parameters for the
conventional algorithms were set to the values suggested in
the publications. The smoothing factor for the PSD estima-
tion was the same for all algorithms, which was αy = 0.7.

First, Fig. 3 shows the SPP maskers obtained using the
evaluated estimators for a target speaker in the frontal direc-
tion. Spectrograms of the clean and 0 dB noisy input signals
are shown in Fig. 3(a) and (b), respectively. The SPP maskers
obtained using the fixed, the SNR- and DDR-based SAPs are
shown in Fig. 3(c), (d) and (e), respectively. The fixed SAP
approach produces biased SPPs in noise only spectral regions.
The SNR-based estimator, on the other hand, clearly distin-
guishes the speech presence region from the noise regions,
but it is difficult to find harmonic structure especially in high
SNR regions. The DDR-based estimator provides the detailed
harmonic structure of the speech signal, but it also produces a
biased SPPs with high variance in noise spectral regions. On
the contrary, SPP obtained using the proposed estimator in
Fig. 3(f) provides not only fine harmonic structures but also
almost unbiased SPP in the noise spectral regions.

The performance of the proposed SPP estimator was fur-
ther analyzed by calculating the receiver operating character-
istic (ROC) curve which is a parametric plot of the correct de-
tection rate versus the false alarm rate [14]. 5 pairs of speech
sentences were used and the results obtained for each sen-
tence were averaged. Pink noise and diffuse noise were added
to make 0 dB and 5 dB SNR conditions. The obtained ROC
curves are depicted in Fig. 4. It can be seen that the SPP

obtained using the proposed a priori SAP estimator achieves
an always significantly higher correct detection rate than the
conventional algorithms for all SNR and noise conditions.

Fig. 4: ROC curves for (a) 0 dB, (b) 5 dB SNR with pink noise, and (c) 0
dB and (d) 5 dB SNR with mensa noise from ETSI database

5. CONCLUSION

In this paper, a new a priori SAP estimator was proposed
based on the MSC of two microphone signals. The proposed
algorithm requires neither an additional mapping function nor
prior knowledge of noise or speech statistics. The simulation
results showed that the proposed SPP estimator can maintain
the harmonic structure of the speech signal and can obtain
higher speech detection rate for a given false alarm probabil-
ity than the conventional algorithms.
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