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ABSTRACT

We propose a deep neural network (DNN) approach to speech
bandwidth expansion (BWE) by estimating the spectral map-
ping function from narrowband (4 kHz in bandwidth) to
wideband (8 kHz in bandwidth). Log-spectrum power is used
as the input and output features to perform the required non-
linear transformation, and DNNs are trained to realize this
high-dimensional mapping function. When evaluating the
proposed approach on a large-scale 10-hour test set, we found
that the DNN-expanded speech signals give excellent objec-
tive quality measures in terms of segmental signal-to-noise
ratio and log-spectral distortion when compared with con-
ventional BWE based on Gaussian mixture models (GMMs).
Subjective listening tests also give a 69% preference score for
DNN-expanded speech over 31% for GMM when the phase
information is assumed known. For tests in real operation
when the phase information is imaged from the given narrow-
band signal the preference comparison goes up to 84% versus
16%. A correct phase recovery can further increase the BWE
performance for the proposed DNN method.

Index Terms— Deep neural network, speech bandwidth
expansion, spectrum mapping, phase estimation

1. INTRODUCTION

Expanding speech bandwidth from narrowband (with 4 kHz
bandwidth) to wideband (with 8 kHz bandwidth) has been
studied for decades as the bandwidth was an expensive re-
source in the early years. Even now the bandwidth for speech
transmission is no longer tensely limited, we still face low
bandwidth restriction in the existing public switching tele-
phone network (PSTN) system. To enhance the listening
quality of speech over PSTN, efforts have been made to
artificially extend the bandwidth.

Many early studies on bandwidth expansion (BWE)
focused on estimating the spectral envelope of the high-
frequency band, and using the excitation generated from the
low-frequency band to recover the high-frequency spectrum
[1]. A few techniques, such as linear mapping [2], piece-
wise linear mapping [3, 4], codebook mapping [5, 6], neural
networks [7, 8], Gaussian mixture model [9, 10], and hid-
den Markov model [11, 12] and non-negative hidden Markov

model [13], have been explored. Linear predictive coeffi-
cients (LPCs) or line spectral frequencies (LSFs) [14, 15]
are widely used to represent the spectral envelope, while the
excitation can be found by inverse filtering the signal with
LPCs, modulation techniques, non-linear processing, and the
application of function generators [1].

In contrast to envelope estimation methods, direct es-
timation of the missing high-frequency spectrum was not
extensively studied because the dimensions of both original
low-frequency spectrum and target high-frequency spectrum
spaces to establish a mapping function are really high. How-
ever, there are still some studies, such as folded spectrum
adjusting [8] and sparse probabilistic state mapping [16]. The
former one folds the narrowband spectrum and adjusts the
level of the wideband spectrum, attempting to estimate the
spectral envelope in a different way. The latter one assumes
that the transmission matrix of the mapping is sparse, which
is usually inaccurate. However, these techniques show that
a direct spectrum estimation of the missing band can have
some benefits and is worth further study.

In summary, we propose to use DNN for spectral map-
ping to estimate the missing high-frequency spectrum. Ex-
periments on a large scale 10-hour test set show that the pro-
posed DNN framework demonstrates better objective mea-
sures in terms of segmental signal-to-noise ratio (SegSNR)
[17] and log-spectral distortion (LSD) [18] when compared
to conventional GMM-based mapping techniques. Subjec-
tive preference listening tests also give a 69% score over 31%
for GMM-expanded speech when the phase information is as-
sumed known. For real operation tests when the phase infor-
mation is imaged from the given narrowband signal the pref-
erence comparison goes up to 84% versus 16%. A correct
phase recovery can further increase the BWE performance for
the proposed DNN approach.

2. DNN BASED SPEECH BANDWIDTH EXPANSION

2.1. Feature Extraction

A block diagram of the proposed DNN-based BWE system
is shown in Figure 1. Given a wideband speech signal x, we
windowed it into overlapping frames, and performed a short-
time Fourier transform (STFT) [19] on the windowed frame
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Fig. 1. A block diagram of the proposed DNN-BWE system.

as follows,

X(`, k) =

N−1∑
n=0

x(`×∆ + n)h(n)e−j2πnk/N , (1)

where ` is the frame index, k = 0, ..., L−1 is the discrete fre-
quency index, ∆ is the window shift, N is the window length,
and h(·) denotes the window function, which is a Hamming
window here. We will omit ` in the rest of the article as we fo-
cus on features of each frame. Log-spectral power magnitude
was then extracted [20],

XM (k) = ln |X(k)|2. (2)

Since x is a real signal, X is conjugate symmetric and is
uniquely determined by only N/2 + 1 points. Thus we use
XM (k) with k = 0, ..., N/2 as features. For the wideband
signal, XM was further separated into a low-frequency spec-
trum, XM

L = [XM (0), ..., XM (N/4)], and a high-frequency
spectrum, XM

H = [XM (N/4 + 1), ..., XM (N/2)], where
XM
H is to be recovered by DNN based on the narrowband

(low-frequency) spectrum.
Besides the magnitude of the Fourier coefficients, the

phase information was extracted as follows,

XP (k) = ∠X(k). (3)

As for the wideband signal, XP was separated to XP
L and

XP
H in the same way as its corresponding magnitude XM .

A narrowband signal z was generated by filtering and
down-sampling the wideband signal x, and ZM and ZP are
its corresponding log-spectral magnitude and phase.

2.2. DNN Training

As shown in Figure 3, the input of the DNN is the log-
spectrum of the narrowband signal and the output is the
high-frequency log-spectrum of the wideband signal. To en-
sure the proper working of DNNs, each dimension of DNNs’
input and output was normalized among all training samples
to ensure it is of zero mean and unit variance. Thus in the
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Fig. 2. A flowchart of feature extraction and wave reconstruc-
tion.

application stage of bandwidth expansion, the same normal-
izing step was executed on input feature vectors, and a reverse
step on the output is necessary.

We used the Kaldi toolkit [21] to train DNNs. Unsuper-
vised pre-training of restricted Boltzmann machine (RBM)
was first performed [22]. Then, in discriminative fine tun-
ing, the minimum mean square error (MMSE) criterion was
used in an attempt to minimize the Euclidean distance be-
tween the predicted high-frequency log-spectrum and the true
high-frequency log-spectrum of the desired wideband signal.
Let Y be the output of DNN, and the objective function of
MMSE is

min
1

2

∥∥(XM
H − µH

)
Σ−1
H − Y

∥∥2
2
, (4)

where µH and Σ−1
H are the mean vector and the diagonal in-

verse covariance matrix of all high-frequency log-spectrum of
training data.
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Fig. 3. DNN architecture and training.
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2.3. Waveform Reconstruction

Even if it was possible to obtain the exact magnitude of the
wideband spectrum, the phase information was lost in the pre-
vious steps. Based on DNN’s output, we have an estima-
tion of the high-frequency spectrum X̂M

H = (Y + µH) ΣH ,
and X̂M = [ZM + 2 ln 2, X̂M

H ], an estimation of expanded
wideband spectrum, where 2 ln 2 compensates the energy loss
due to only half of the points of wideband signal is used to
calculate the narrowband spectrum. The narrowband spec-
trum is not modified in order to prevent quality degradation
[7]. As for the phase, we have an estimation of the low-
frequency phase X̂P

L = ZP and the high-frequency phase
is unknown. Imaged phase is a simple estimation that X̂P =
[ZP ,−flip(ZP )], where flip(ZP ), or abbreviated as ZPf , is
defined as ZPf (k) = ZP (N/4−1−k) for k = 0, 1, ..., N/4−
1. The inverse discrete Fourier transform (IDFT) was then
performed on

X̂(k) = exp

{
1

2
X̂M (k) + jX̂P (k)

}
, (5)

an inverse step of (2) and (3), and overlap add given in [23]
with the same Hamming window for feature extraction was
used to reconstruct the signal x̂.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We experimented on the Wall Street Journal (WSJ0) corpus
[24] with microphone speech sampled at 16 kHz in 16 bits
resolution. A direct comparison with other techniques is not
easy. Instead we conducted a large-scale test on WSJ0 with
31166 utterances in the training set (with about 50 hours for
training and 10 hours for validation), and 4137 utterances for
testing (about 10 hours). The window size of STFT is 512
samples with a shift length of 256 samples on the wideband
signal, while the narrowband signal has a window size of 256
with a window shift of 128. The base learning rate of MMSE
training was set to 10−5, and the “newbob” method [25] was
applied that halves the learning rate when the decrease of the
mean squared error is less than 0.1, and stops when it’s less
than 0.01. Mini-batch training [26] with a batch size of 32
utterances was adopted. As a comparison, a full covariance
joint GMM with 2045 mixtures was built and used to perform
the same regression function as DNNs.

3.1.1. Objective Quality Measures

The objective quality measures used in our experiments were
segmental SNR (SegSNR) [17] and log-spectral distortion

(LSD) [18] defined as follows:

SegSNR =
1

L

L−1∑
`=0

10 lg

N−1∑
n=0

[x(`, n)]2

N−1∑
n=0

[x(`, n)− x̂(`, n)]2

 , (6)

where ` indicates the `-th frame, and L denotes the number of
frames in the utterance.

LSD =
1

L

L−1∑
`=0

 1
N
2 + 1

N
2∑

k=0

[
XM (`, k)− X̂M (`, k)

]2
1
2

,

(7)
To measure the performance on estimating the high-band
spectrum, we also introduce LSDH that only sums up the dis-
tortion in the high half-band with discrete frequency indices,
k = N/4 + 1, ..., N/2.

3.1.2. Subjective Test

Besides the aforementioned objective measures, a subjective
listening test was conducted as well. Ten volunteers were
asked to listen to 10 random pairs of test utterances and their
preferences were recorded and summed up to indicate the
overall preference.

3.2. Results and Discussion

3.2.1. Structure of DNN

The size and shape of DNNs will affect the performance of
the neural networks. For simplicity, we focused on DNNs
with the same width for all hidden layers. We adopted the
structure settings in [27]. As shown in Figure 4, DNN with
9 frames, 3 hidden layers and 2048 hidden nodes per layer
is a locally optimal parameter setting in our experiments on
the WSJ0 dataset. Here 9 frames means 4 previous and 4
following frames were concatenated together with the current
frame to feed into the input layer of DNNs. The performance
was seen to be not sensitive to small parameter differences.
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Fig. 4. MSE of different DNNs. Default parameters are 9
frames, 3 layers and 2048 hidden nodes in each layer, and
only one of the three parameters is varied in each comparison.
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Table 1. Objective Measure on Reconstructed Signals
SegSNR (dB) LSD (dB) LSDH (dB)

GMM CP 15.42 6.34 8.28
IP 12.12 7.29 9.72

DNN CP 16.47 5.32 6.69
IP 12.78 6.44 8.44

3.2.2. Objective Performance

Table 1 lists the results of SegSNR and LSD of the recon-
structed signals of different methods and phase used. The
first row of each method is “CP” which indicates we used the
“cheated phase”, i.e., we used the higher half-band phase of
the original wideband signal not available at the input narrow-
band signal. The second row of each method is “IP” which in-
dicates the use of imaged phases, i.e., we flipped the phase of
the input narrowband signal to the upper half-band and added
a minus sign to them. Contrary to conventional thinking, if
incorrect phase is used in reconstruction, the SegSNR of the
reconstructed signal will be greatly degraded (from 15.42 to
12.12 dB for GMM and from 16.47 to 12.78 dB for DNN).
The LSD of the cheated phase is always more than 1 dB bet-
ter than that of the imaged phase. As for LSD of the high-
band, it is always more serious than that for the whole band at
about 1.3 to 2 dB degradation. Moreover, DNN outperformed
GMM in both “CP” and “IP” cases and on all three measures.

Figure 5 gives an example of one female utterance and
one male test utterance. One problem of directly predicting
high-frequency spectrum is that there will be a discontinuity
between low-frequency and high-frequency spectrum.
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Fig. 5. Spectrogram of one female test utterance and one male
test utterance, top row: original, bottom row: reconstructed
signal, left column: female, and right column: male.

Table 2. Preference Test on Reconstructed Signals
CP IP

GMM 31% 16%
DNN 69% 84%

3.2.3. Subjective Performance

When competing with narrowband signal, both GMM and
DNN get 100 percent of preference. And Table 2 shows the
competition result between GMM and DNN. They give a 69%
score over 31% for GMM-expanded speech when the phase
information is assume known. For real operation tests when
the phase information is imaged from the given narrowband
signal the preference comparison goes up to 84% versus 16%.
Good estimated phase information can further increase the
BWE performance for the proposed DNN approach.

3.2.4. Comparison of Computation Complexity

A workstation with 32 2.93 GHz CPU cores and one GTX480
graphic card was used in our experiments. Table 3 shows the
computational time of DNN and GMM in training and expan-
sion stages. The test data size itself was about 600 minutes,
that is the expansion stage can be real-time. However, the
lag time of DNNs depends on the parameter settings. Using
the experimental setting mentioned above the lag time was
96 ms ((4 frame shift × 128 point/shift + 1 current frame ×
256 point/frame) ÷ 8 kHz).

Table 3. Time Consumption of Training and Testing
Train Test

DNN 1501 min 93 min
GMM 358 min 367 min

4. CONCLUSION AND FUTURE WORK

In this paper, a deep neural network based framework of
speech bandwidth expansion is proposed. Taking advantage
of the deep learning ability, the DNN is shown to be able to
map the magnitude spectrum of the input narrowband signal
to that of the high-band of the wideband signal. Experimen-
tal results, on a large-scale 10-hour test set, show that the
proposed DNN framework can effectively estimate the high-
frequency spectrum and achieve a higher segmental SNR
and lower log-spectral distortion when compared to a GMM
based-BWE approach. A subjective test also confirms that
our proposed framework demonstrates higher listening pref-
erence than the competing GMM-based systems. For further
work, we intend to address the spectrum discontinuity issue
mentioned in Figure 5. Furthermore with a correct phase re-
covery we observe that the system performance can further be
improved which will be studied in another upcoming paper.
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