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ABSTRACT

Supervised speech separation has achieved considerable suc-

cess recently. Typically, a deep neural network (DNN) is used

to estimate an ideal time-frequency mask, and clean speech is

produced by feeding the mask-weighted output to a resynthe-

sizer in a subsequent step. So far, the success of DNN-based

separation lies mainly in improving human speech intelligi-

bility. In this work, we propose a new deep network that di-

rectly reconstructs the time-domain clean signal through an

inverse fast Fourier transform layer. The joint training of

speech resynthesis and mask estimation yields improved ob-

jective quality while maintaining the objective intelligibility

performance. The proposed system significantly outperforms

a recent non-negative matrix factorization based separation

system in both objective speech intelligibility and quality.

Index Terms— Deep neural network, speech separation,

time-frequency masking, time-domain signal

1. INTRODUCTION

Monaural speech separation is a long-standing problem with

many important applications, such as robust automatic speech

recognition and mobile speech communication. In low

signal-to-noise ratio (SNR) conditions, monaural separa-

tion is particularly challenging when facing non-stationary

noises. Compared to traditional speech enhancement [11],

data-driven techniques have shown substantial promise in

these challenging acoustic conditions [15, 17].

A successful new trend is supervised speech separa-

tion, as exemplified by its recent demonstration in improving

speech intelligibility of both normal-hearing [9] and hearing-

impaired listeners [4] in noisy environment. In its simplest

form, supervised separation learns a mapping from noisy

mixtures to an ideal time-frequency (T-F) mask. The esti-

mated ideal mask is then used to weight the mixture in the

T-F domain, and the resulting output along with the mixture

phase is passed into a separate resynthesizer to produce the

time-domain speech signal. Recently proposed deep neural

network (DNN) based separation generalizes well to various

test conditions if properly trained [17, 20]. Once trained,

separation operates in a frame-by-frame fashion, making it

amenable to real-time implementation.

To improve the quality of separated speech, this study pro-

poses to directly reconstruct the time-domain signal, which is

the ultimate target of interest. Although touched upon be-

fore [14, 16], using a standard feedforward network to learn

the mapping to clean signal does not seem to work well. To

tackle this, we propose a new network that incorporates the

domain knowledge of speech resynthesis by adding an inverse

fast Fourier transform (IFFT) layer before the output layer.

The speech resynthesis and mask estimation can be jointly

trained in a single network. As a result, the mask is estimated

(learned) in a way that directly impacts the final time-domain

signal reconstruction, leading to improved quality.

We briefly review the supervised speech separation frame-

work in the next section. We introduce the proposed network

architecture in Section 3, and the experimental results are de-

scribed in Section 4. The last section concludes this paper.

2. SUPERVISED SPEECH SEPARATION

Supervised speech separation employs data-driven, super-

vised learning for the separation task, unlike traditional sig-

nal processing methods. First, acoustic features are extracted

from the noisy mixture. These features are fed into a learn-

ing machine, typically a deep neural network, where training

targets are provided by the ideal mask of interest.

The ideal binary mask (IBM) is typically used as the train-

ing target due to its simplicity and large intelligibility im-

provements (e.g. [1, 2, 10]). The IBM is a binary matrix con-

structed from premixed signals. We set the value of a T-F unit

to 1 if the local SNR is greater than a local criterion (denoted

as LC) and 0 otherwise. That is:

IBM(t, f) =

{

1, if SNR(t, f) > LC

0, otherwise,

where SNR(t, f) denotes the local SNR within the T-F unit

at time t and frequency f . Estimating the IBM has been

shown to improve speech intelligibility [4, 9], but not nec-

essarily speech quality [19]. Following common practice, we

use a 64-channel Gammatone filterbank to derive the IBM,
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Fig. 1. Schematic diagram of the proposed system.

and set LC to be 5 dB less than the input SNR to preserve

adequate speech information.

Alternatively, our recent work [19] suggests to predict the

ideal ratio mask (IRM), which is shown to improve both ob-

jective intelligibility and quality. The IRM is defined as:

IRM(t, f) =

(

S2(t, f)

S2(t, f) +N2(t, f)

)β

,

where S2(t, f) and N2(t, f) denote the speech and noise en-

ergy in a particular T-F unit. β is a tunable parameter to scale

the mask. One can see that the IRM is closely related to the

ideal Wiener filter [11]. In this study, we use β = 1 as it

achieves good objective speech quality results. The IRM is

also derived using a 64-channel Gammatone filterbank.

3. PROPOSED NETWORK ARCHITECTURE

Figure 1 illustrates the architecture of the proposed system,

which is similar to a standard DNN mask estimator with two

key differences. First, the process of converting from the fre-

quency domain to time domain is incorporated in the network.

This domain knowledge enables the reconstruction of the fi-

nal time-domain signal in one pass and makes learning much

easier. Second, there is no predefined ideal mask for training.

Instead, the last hidden layer is treated as a masking layer and

is automatically learned via the backpropagation algorithm.

This can be viewed as a form of task-dependent masking (see

also [12]). For simplicity, masking is carried out in the dis-

crete Fourier transform (DFT) domain, so that resynthesis can

be conveniently implemented as an IFFT. In the following,

we describe the forward pass and backpropagation of the pro-

posed network in detail.

3.1. Forward Pass

For the input at frame t, we denote ht as the corresponding

network activations from the last hidden layer, and yt the cor-

responding DFT-domain mixture magnitude. For simplicity,

we set the analysis FFT length L to the frame length. Let

d = L/2, and yt is thus a d+ 1 dimensional vector. We treat

ht as the mask at frame t. Therefore, the masked magnitude,

or the estimated clean speech magnitude, is obtained as:

mt = ht
◦ yt, (1)

where ◦ denotes element-wise multiplication. Note that for

Eq. (1) to be valid, the last hidden layer ht must also be of

dimension d+ 1, whereas all other hidden layers do not have

this constraint. The estimated spectral magnitude along with

the corresponding mixture phase are fed into an IFFT layer,

generating the time-domain waveform in frame t at the output

layer of the network. Specifically, the estimated clean speech

ŝt is obtained as follows:

ŝt = IFFT
(

[

ct, flipud
(

conj
(

ct2:d
))]T

)

, (2)

where ct is the complex spectrum, i.e.,

ct = mt
◦ eip

t

. (3)

Here, pt is the phase angle (in radians) at frame t, and i the

imaginary unit. ‘flipud’ denotes an operation that flips a vec-

tor upside down, and ‘conj’ the complex conjugation. The

subscript m : n denotes an operation that slices a vector from

index m to n inclusively. Essentially, Eq. (2) first produces a

conjugate symmetric version of ct, which is used as input for

the subsequent IFFT to generate real time-domain signal. To

isolate the impact of phase, we use mixture phase in this work.

Estimated clean phase can surely be used and is expected to

further improve the results.

The standard mean squared error between the estimated

and clean signal is used as the loss function for the back-

propagation training. In testing, we use the trained network

to directly predict the (windowed) clean waveform snippets

in each frame, which are overlap-added to produce the final

time-domain reconstruction of the entire utterance.

3.2. Backpropagation

The proposed network architecture is trainable via the stan-

dard backpropagation algorithm, as the IFFT layer, i.e.

Eq. (2), can be easily written in a set of matrix operations

with fixed weight matrices. This is described as follows.

To begin with, we first define a permutation matrix

P(d−1)×(d+1) =
[

0(d−1)×1 R(d−1)×(d−1) 0(d−1)×1

]

,

where 0(d−1)×1 is an all zero column vector of dimension

d − 1, and R(d−1)×(d−1) is the 90 degrees counterclockwise

rotation of the identity matrix I(d−1)×(d−1). Then, the conju-

gate symmetric complex spectrum can be expressed as

[

mt
◦ eip

t

P(d−1)×(d+1)

(

mt
◦ e−ipt

)

]

. (4)
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By expressing the inverse DFT operation in matrix form and

plugging in Eq. (1), we can rewrite Eq. (2) as

ŝt = DL×L

[

ht
◦ yt

◦ eip
t

P(d−1)×(d+1)

(

ht
◦ yt

◦ e−ipt

)

]

, (5)

where DL×L is the inverse DFT matrix of length L, i.e.

Dnk = ei
2π

L
(n−1)(k−1)/L for n, k = 1, 2, · · · , L, denoting

the matrix element in row n and column k.

The inverse DFT matrix and the permutation matrix are

predefined, and can be interpreted as fixed weight matrices

of the network. Based on Eq. (5) and the loss function, one

can easily derive the error signals with respect to the last hid-

den layer ht. Consequently, the gradients with respect to the

tunable weights can be derived via the delta rule. Note that

although there are no tunable weights in the IFFT layer, it af-

fects the gradients to the downstream layers. As a result, the

hidden mask ht is automatically learned in light of the loss

function of interest. In addition, it is known that even clean

magnitude may not lead to clean speech signal due to noisy

phase, which is especially true for low SNR mixtures. There-

fore, another perspective is that the proposed network tries

to learn an optimal masking function given the noisy (or the

supplied) phase, differentiating itself from typical separation

systems that are phase agnostic.

4. EXPERIMENTS

4.1. Experimental Settings

All signals are sampled at the 16 kHz rate, and are framed by

20-ms windows and 10-ms frame shifts. Hence the length of

the time-domain signal snippet in each frame is 320 samples.

We use 2000 randomly picked utterances from the TIMIT

[8] training part as the training utterances. We use four types

of non-stationary noises as the training and test noises: a fac-

tory noise, a babble noise, an engine noise, and an operation

room noise (called “oproom”). Each noise is about 4 minutes

long, and the first half is used to mix with the training utter-

ances at -5 and 0 dB to create the training set. The TIMIT core

test set, which consists of 192 utterances from unseen speak-

ers, is used to mix with the second half of each noise to create

the respective test sets at -5, 0, and 5 dB SNR, where the 5 dB

SNR is unseen. Dividing the noises into two halves ensures

that test noise segments are unseen. To further demonstrate

the effectiveness of our method, we train and test on the IEEE

corpus [7] recorded by a male speaker, where 600 IEEE ut-

terances are used for training and 60 new ones for testing.

We use two new noises, i.e. a different babble noise (called

“babble2”) and a cafeteria noise, to create the training and test

mixtures as done for the TIMIT corpus. The new noises are

about 10 minutes long each.

We call the proposed system IFFT-DNN. We first compare

with two existing DNN-based supervised speech separation
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Fig. 2. Visualization of the last hidden layer activations

(masking layer) obtained from a TIMIT utterance mixed with

the factory noise at 5 dB.

systems, which predict the IBM (IBM-DNN) and the IRM

(IRM-DNN), respectively. We then compare with a baseline

system DT-DNN that directly predicts the clean signal using

the standard DNN. All systems, except for DT-DNN, use a

complementary feature set [18] combined with the Gamma-

tone filterbank energy as input features. DT-DNN is trained

on the raw noisy signal, which performs better than using

the complementary feature set. The DNNs in all systems

have three hidden layers, each having 1024 rectified linear

units (ReLUs), and are trained using adaptive stochastic gra-

dient descent [3] with dropout regularization [5]. A special

case is IFFT-DNN, where the last hidden layer has 161 lin-

ear units, as their activations are used to mask the mixture

magnitude of the same length. We use linear units because

clean speech magnitude can be greater than its mixture mag-

nitude. Finally, to put the performance of IFFT-DNN in per-

spective, we compare with a recent non-negative matrix fac-

torization (NMF) based system ASNA-NMF [15], which uses

an active-set Newton algorithm and models a sliding window

of 5 frames of DFT magnitudes. ASNA-NMF is trained on

the same training set as used for the other systems.

To evaluate the objective speech quality, we use the com-

posite measure (OVRL) proposed in [6], which shows a high

correlation with subjective mean opinion scores. We evaluate

the objective speech intelligibility using the short-time objec-

tive intelligibility (STOI) measure [13], which ranges from 0

to 1 and has been shown to be highly correlated with human

intelligibility scores. Both OVRL and STOI are obtained by

comparing separated speech with clean speech.

4.2. Results

The separation results on the -5, 0 and 5 dB TIMIT test sets

are listed in Table 1, 2, and 3, respectively. In terms of ob-

jective speech quality, most systems improve over the unpro-

cessed mixtures in -5 dB. Due to the use of low LC values
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Table 1. Performance comparisons on -5 dB TIMIT mixtures.

Boldface indicates best result

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 1.39 0.54 1.62 0.55 1.41 0.57 1.44 0.59

IBM-DNN 1.35 0.66 1.66 0.63 1.14 0.78 1.40 0.77

IRM-DNN 1.61 0.67 1.62 0.62 1.61 0.78 1.73 0.77

IFFT-DNN 1.86 0.65 1.70 0.61 2.41 0.77 2.38 0.75

DT-DNN 1.65 0.50 1.41 0.44 1.76 0.55 1.76 0.55

ASNA-NMF 1.71 0.60 1.70 0.57 2.15 0.71 1.99 0.68

Table 2. Performance comparisons on 0 dB TIMIT mixtures

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 1.81 0.65 2.05 0.67 1.79 0.69 1.93 0.70

IBM-DNN 1.59 0.78 2.12 0.76 1.15 0.85 1.34 0.83

IRM-DNN 2.14 0.78 2.22 0.76 2.10 0.85 2.23 0.83

IFFT-DNN 2.40 0.78 2.30 0.75 2.81 0.85 2.73 0.82

DT-DNN 1.83 0.56 1.64 0.52 1.93 0.60 1.93 0.60

ASNA-NMF 2.21 0.73 2.30 0.71 2.62 0.80 2.45 0.78

and binary gains, IBM-DNN obtains relatively worse qual-

ity results compared to the other DNN systems. IRM-DNN

uses ratio masking and significantly outperforms IBM-DNN

in OVRL. The proposed system, IFFT-DNN, further improves

upon IRM-DNN significantly. For example, for the -5 dB

engine noise, IFFT-DNN outperforms IRM-DNN by 0.8 in

OVRL. A closer look (results not shown) indicate that IFFT-

DNN in general has better noise suppression capability with-

out further distorting target speech. DT-DNN uses a standard

DNN to predict the time-domain clean signal. However, its

performance is inferior to masking-based systems and IFFT-

DNN. Without explicitly embedding the resynthesis process

into the network, the parametrization of the standard DNN

does not seem amenable to efficient learning on single chan-

nel time-domain signals. Although it is also a data-driven

system, ASNA-NMF does not work well in low SNR condi-

tions; In particular, it is ineffective in noise suppression, as

indicated by the poor performance in noise suppression (not

shown), which in turn leads to low overall performance.

The performance trends in 0 and 5 dB SNR conditions

are similar to those in -5 dB, with IRM-DNN outperform-

ing IBM-DNN and DT-DNN performing poorly. Similarly,

IFFT-DNN significantly outperforms all the other DNN sys-

tems as well as ASNA-NMF. Figure 2 visualizes the learned

mask (the last hidden layer activations) of a TIMIT utterance

mixed with the factory noise at 5 dB SNR.

It is important that the improvement in speech quality

does not come at the expense of degraded speech intelligibil-

ity. In terms of STOI, we can see that IBM-DNN and IRM-

DNN perform similarly. At -5 dB, IFFT-DNN is worse than

IRM-DNN (about 2%), whereas in 0 and 5 dB, IFFT-DNN

achieves similar STOI results as IRM-DNN. DT-DNN fails

to improve objective intelligibility in all conditions. ASNA-

NMF also fails to compete with masking-based systems and

IFFT-DNN, even in high SNR conditions.

Table 3. Performance comparisons on 5 dB TIMIT mixtures

System
Factory Babble Engine Oproom

OVRL STOI OVRL STOI OVRL STOI OVRL STOI

Mixture 2.32 0.77 2.55 0.77 2.25 0.80 2.44 0.79

IBM-DNN 1.80 0.86 2.56 0.86 1.09 0.89 1.09 0.86

IRM-DNN 2.63 0.86 2.78 0.86 2.39 0.90 2.43 0.88

IFFT-DNN 2.83 0.86 2.82 0.85 3.15 0.91 3.11 0.87

DT-DNN 1.90 0.59 1.72 0.56 1.97 0.62 1.96 0.62

ASNA-NMF 2.67 0.82 2.79 0.82 3.04 0.88 2.88 0.85

Table 4. Performance comparisons on the male IEEE corpus.

Results averaged over -5, 0, and 5 dB mixtures

System
Babble2 Cafeteria

OVRL STOI OVRL STOI

Mixture 1.97 0.67 1.68 0.66

IRM-DNN 2.06 0.84 1.79 0.78

IFFT-DNN 2.53 0.82 2.38 0.78

ASNA-NMF 2.24 0.71 2.21 0.69

To further evaluate our network, we train and test on

a different corpus with two different non-stationary noises.

The averaged results on the IEEE corpus recorded by a male

speaker are shown in Table 4. Again, IFFT-DNN consis-

tently outperforms IRM-DNN in OVRL, while still achieving

comparable STOI results. In terms of STOI, ASNA-NMF is

substantially worse than supervised speech separation.

5. CONCLUSIONS

We have proposed a novel supervised separation system aim-

ing to improve the sound quality of the separated speech. The

key idea is to combine speech resynthesis and mask estima-

tion in a single neural network and have them jointly trained.

The resulting system, IFFT-DNN, takes advantage of both T-

F masking and direct time-domain signal reconstruction. Re-

sults in various test conditions indicate that IFFT-DNN sig-

nificantly improves objective speech quality while achieving

comparable intelligibility results compared to a strong base-

line IRM-DNN. IFFT-DNN also significantly outperforms a

state-of-the-art NMF based separation system in terms of both

quality and intelligibility.

Further work will explore improvements such as using

enhanced phase, employing better loss functions for time-

domain signals, and adapting the resynthesis to auditory

frequency scales. Finally, we envision that the proposed ar-

chitecture provides a means to implement an end-to-end (i.e.

waveform in, waveform out) speech separation system, where

raw feature extraction, T-F masking, and speech resynthesis

are all trained in one pipeline.
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