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ABSTRACT
Recurrent neural networks (RNNs) have recently been applied as the
classifiers for sequential labeling problems. In this paper, deep bidi-
rectional RNNs (DBRNNs) are applied for the first time to error de-
tection in automatic speech recognition (ASR), which is a sequential
labeling problem. We investigate three types of ASR error detection
tasks, i.e. confidence estimation, out-of-vocabulary word detection
and error type classification. We also estimate recognition rates from
the error type classification results. Experimental results show that
the DBRNNs greatly outperform conditional random fields (CRFs),
especially for the detection of infrequent error labels. The DBRNNs
also slightly outperform the CRFs in recognition rate estimation. In
addition, experiments using a reduced size of training data suggest
that the DBRNNs have a better generalization ability than the CRFs
owing to their word vector representation in a low-dimensional con-
tinuous space. As a result, the DBRNNs trained using only 20% of
the training data show higher error detection performance than the
CRFs trained using the full training data.

Index Terms— Automatic speech recognition, error detection,
recognition rate estimation, deep bidirectional recurrent neural net-
works, generalization ability

1. INTRODUCTION

Conditional random fields (CRFs) [1] have been the most successful
classification approach for addressing various types of sequential la-
beling problems in the fields of natural and spoken language process-
ing. CRF is a discriminative model that calculates the probability of
an output label sequence given an input feature vector sequence. By
designing the observation feature functions, it can consider an input
feature vector sequence across several preceding and/or succeeding
time steps as a contextual feature vector to predict the output label of
the current time. By designing the transition feature functions, it can
also consider the n-gram dependency of the output labels, where n
is typically two.

Recently, recurrent neural network (RNN) architectures have
been successfully introduced in the language modeling for auto-
matic speech recognition (ASR), e.g. [2–4]. A conventional n-gram
language model considers only n− 1 preceding words (where n
is typically three or four) to predict the current word. In contrast,
an RNN language model (RNNLM) can consider the entire word
history by recursively propagating the activation vector through its
hidden layer that has a self-loop connection. In addition, in contrast
to the conventional n-gram model, which represents words with
indices, the RNNLM (and also a feedforward NN-based language
model) projects the word indices, i.e. high-dimensional one hot
sparse word vectors, into a low-dimensional continuous space. With
this dense word vector representation in a low-dimensional continu-
ous space, the (R)NNLM provides a better generalization for unseen
n-grams [5].

Following the success of RNNLMs in ASR, RNNs have recently
been applied as the classifiers for several sequential labeling prob-
lems in spoken language processing. For example, in [6–8], spoken
language understanding, i.e. word labeling with semantic meaning
tags, is conducted using the airline travel information system cor-
pus. And it is reported that the RNNs (both standard and modi-
fied) outperform the CRF and feedforward NN baselines. In [9],
the frame-wise classification of speech recordings into three vocal-
ization classes, i.e. laughter, filler and garbage, is conducted using
the SSPNet Vocalization Corpus. And it is reported that the long
short-term memory (LSTM) [10, 11] based RNNs outperform the
feedforward NN baseline.

ASR error detection, e.g. confidence estimation and out-of-
vocabulary (OOV) word detection, is a sequential labeling problem
and CRFs have been applied as the classifiers, e.g. [12–17]. Feed-
forward NNs have also been applied, e.g. [14, 18–20] (in [19], an
RNNLM is used as a feature extractor, but the classifier is a feedfor-
ward NN). However, to the best of our knowledge, there seems to be
no study that directly applies RNNs as the classifiers for ASR error
detection.

In this paper, we apply RNNs as the classifiers for ASR error
detection for the first time. We employ RNNs with a deep [21] and
bidirectional [22] structure, i.e. DBRNNs (Section 2). They have a
standard tanh activation function or, alternatively, an LSTM block
[10, 11] on each node in their hidden layers. We investigate three
types of ASR error detection tasks, i.e. confidence estimation, OOV
word detection and our proposed error type classification [15,23,24]
(Section 3). We also estimate recognition rates from the error type
classification results. Experimental results show that the DBRNNs
greatly outperform CRFs, especially for the detection of infrequent
error labels (Section 4.2). The DBRNNs also slightly outperform
the CRFs in recognition rate estimation (Section 4.3). In addition,
experiments using a reduced size of training data suggest that the
DBRNNs have a better generalization ability than the CRFs owing
to their word vector representation in a low-dimensional continuous
space as with in RNNLMs (Section 4.4).

2. DEEP BIDIRECTIONAL RNNS

We employ the bidirectional RNN (BRNN) [22] that is shown in
Fig. 1 and formulated as
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is the weight matrix between the two vectors p and q, br is the bias
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Fig. 1. Bidirectional RNN unfolded across time.

Table 1. Features associated with a recognized word. Features 1 to
3 are lexical or symbolic features and are each expanded to a one hot
feature vector. The others are numerical features.

1. Recognized word itself 10. # of frames per phone
2. Part-of-speech 11. Acoustic log likelihood
3. Back-off behavior 12. Unigram log likelihood
4. Correct recognition prob. 13. Trigram log likelihood
5. Substitution error prob. 14. # of alternative hypotheses
6. Insertion error probability 15. # of preceding ε segments
7. Deletion error probability 16. Sum. of ε probabilities
8. Number of frames 17. Sum. of # of alter. hypos.
9. Number of phones

term of the vector r, f(·) is the activation function (e.g. tanh) on
each node in the hidden layers, g(·) is the softmax function, and yt

is the posterior probability vector of the output label at time t.
In the BRNN, the forward and backward activation vectors are

recursively propagated through its forward and backward hidden lay-
ers that each have a self-loop connection. Thus, conceptually, the
BRNN can consider the context of the input feature vectors across
the preceding and succeeding full time steps to predict the output
label of the current time. This is a big advantage over the CRFs,
which can consider only the context across several time steps. How-
ever, considering the context across the full (long) time steps is actu-
ally difficult due to the well-known vanishing gradient problem [25].
The standard activation function, e.g. sigmoid and tanh (we use tanh
in this research), can cause this problem and, alternatively, the long
short-term memory (LSTM) block [10, 11] has been proposed to ad-
dress the problem. In this research, we use the LSTM block in addi-
tion to the tanh activation function. Using the LSTM block, we can
expect to obtain better performance than with tanh, especially when
the input feature vector sequence is long.

Our RNN has a deep structure in addition to a bidirectional
structure, i.e. DBRNN. Several hidden layers are stacked in the for-
ward and backward directions individually, i.e. there is no connec-
tion from a forward hidden layer to a backward hidden layer and
vice versa (in Fig. 1, the deep structure is omitted for simplicity).
The effect of the deep structure has been confirmed especially in the
acoustic modeling for ASR, i.e. by using several non-linear hidden
layers, we can model highly non-linear relationships between the in-
put feature vectors and the output labels [21].

In ASR error detection, xt is the input feature vector associated
with the t-th recognized word in a recognition result (hypothesized
word sequence). Table 1 lists the features used in this research. The
first feature is the recognized word itself and it is expanded to a V -
dimensional one hot word vector, where V is the vocabulary size
(features 2 and 3 in Table 1 are also expanded to one hot vectors,
however, their dimensionalities are much lower than V ). In general,
such a high-dimensional sparse feature vector causes the degrada-
tion of the generalization ability of classifiers. However, an (R)NN
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Fig. 2. Word alignment result between a recognition result and its
reference transcription. (Correct) label sequences for 1. confidence
estimation, 2. OOV word detection, 3. CSI classification and 4.
deletion error detection. The dotted rectangle indicates the segment
that is influenced by the utterance of an OOV word “dissimilar”.

projects a sparse feature vector into a low-dimensional continuous
space [2–8]. In this research, a dense word vector can be obtained as
a column in W

x,
−→
h

and W
x,
←−
h

in Eqs. (1) and (2), i.e. the weight
matrices between the input and the first forward and backward hid-
den layers of the DBRNN. This projection can be understood as a
sort of soft clustering since, with this projection, different words
are represented with similar vectors if they have similar ASR er-
ror trends. And we can expect that, if the projection is accurately
estimated in the training, the DBRNN shows a good generalization
ability, i.e. a good ASR error detection performance when there is a
mismatch between the training and evaluation data.

The above generalization works only for words that appear in
the training data. There are words that are in the vocabulary (ASR
dictionary) but that do not appear in the training data. If such words
appear in the development and/or evaluation data, untrained projec-
tions based on the initial random weights are applied to the words.
And the ASR error detection results for the words are unreliable. To
address this problem, we zeroize the weights for the untrained words.
With this weight zeroization, ASR error detection for the untrained
words can be conducted using features other than words. We found
in the preliminary experiments that the effect of weight zeroization
is limited but consistent. Thus, we use this technique in all the ex-
periments described in Section 4.

3. ASR ERROR DETECTION
AND RECOGNITION RATE ESTIMATION

To identify recognition errors in continuous speech recognition, a
word alignment is made between a recognition result and its refer-
ence transcription using a scoring tool (e.g. NIST SCLITE scoring
package [26]) based on a dynamic programming procedure. Fig. 2
shows an example of such word alignment results. In this figure, a
recognized word is classified into one of three categories, i.e. correct
(C), substitution error (S) and insertion error (I). A deletion error (D)
is also detected. In general, ASR error detection is a task that esti-
mates word alignment results given the recognition results without
using their reference transcriptions.

Confidence estimation, e.g. [12–15, 18, 19], is the most basic
ASR error detection task. In confidence estimation, as shown in
Fig. 2, the t-th recognized word wt in a recognition result is labeled
as C or incorrect (C), where C is S or I. This word labeling is per-
formed probabilistically, i.e. P (C|wt) + P (C|wt) = 1.
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OOV word detection, e.g. [15–17, 20], can be rephrased as “the
detection of misrecognized words caused by an utterance of an OOV
word”. Thus, as shown in Fig. 2, we have to define the segment
that is influenced by an utterance of an OOV word. In this exam-
ple, we consider that the utterance of an OOV word “dissimilar” can
influence not only a directly corresponding recognized word “sim-
ilar” but also one preceding and one succeeding recognized word,
i.e. “this” and “about”. “similar” and “this” are in the influenced
segment and misrecognized. Thus, they are each labeled as an OOV
word, or more precisely, “a misrecognized word caused by an ut-
terance of an OOV word”. “about” is also in the influenced seg-
ment, however, it is correctly recognized. Thus, it is labeled as
an in-vocabulary (IV) word. As with the confidence estimation,
P (IV|wt) + P (OOV|wt) = 1.

Error type classification [15,23,24] can be divided into two sub
tasks. The first sub task is CSI classification. It is a simple extension
of the confidence estimation and, as shown in Fig. 2, it labels the t-th
recognized word wt in a recognition result as C, S or I probabilisti-
cally, i.e. P (C|wt)+P (S|wt)+P (I|wt) = 1. The second sub task is
deletion error detection (also proposed in [27]). It is a difficult task
since consecutive deletion errors can occur at arbitrary inter-word
positions in a recognition result. In this research, we focus on de-
tecting the inter-word positions that have deletion errors and do not
count the number of deletion errors in the inter-word position. This
simplification is reasonable since, investigating the data used in the
experiments described in Section 4, we found that about 80% of the
deletion errors are singletons. We identify an inter-word position us-
ing a recognized actual word that succeeds the inter-word position.
As a result, in our deletion error detection, as shown in Fig. 2, the
inter-word position that precedes the t-th recognized actual word wt

is labeled as “the inter-word position that has one or more deletion
errors (D)” or “that has no deletion error (D)” (details are provided
in [23]). As with the other tasks, P (D|wt) + P (D|wt) = 1. In the
scoring phase, even if we can correctly detect an inter-word position
that has two or more consecutive deletion errors, we evaluate this as
the correct detection of only one deletion error and the other deletion
errors are not detected.

Recognition rate estimation [15, 23, 24] can be conducted using
the results of error type classification. It is an essential technique
if we are to judge whether or not ASR technology is applicable to
a new task at low cost, i.e. without using reference transcriptions.
We obtain the CSID probabilities for the t-th recognized word wt

in a recognition result, i.e. P (C|wt), P (S|wt), P (I|wt), P (D|wt),
as the results of error type classification. Using these CSID prob-
abilities, we can estimate the numbers of CSIDs in the recognition
results for an evaluation data as, e.g. E(#C) =

∑
i

∑
t P (C|wt),

where i is an index of a recognition result for an utterance in the
evaluation data. Then, using these estimated numbers of CSIDs,
i.e. E(#C), E(#S), E(#I), E(#D), we can estimate the speech
recognition rates, i.e. the percent correct (%Cor) and word accu-
racy (WAcc) for the evaluation data as %Cor=#C/#N×100 [%] and
WAcc=(#C−#I)/#N×100 [%], where #N is the estimated number
of words included the evaluation data (#N=#C+#S+#D). We can
say that recognition rate estimation is easier than the ASR error de-
tection tasks described above since recognition rate estimation re-
quires only the accurate estimation of the numbers of CSIDs while
the ASR error detection tasks require the accurate word-by-word la-
beling.

4. EXPERIMENTS

We conducted experiments using the MIT lecture speech cor-
pus [28]. We compared the DBRNNs with the CRFs as regards
performance of ASR error detection and recognition rate estimation.
We also conducted experiments using a reduced size of training data
to investigate generalization ability of the classifiers.

Table 2. Classification accuracies [%] and F-scores [%] of 1. confi-
dence estimation, 2. OOV word detection, 3. CSI classification and
4. deletion error detection obtained by CRF and the DBRNNs. Val-
ues in parentheses indicate ratios [%] of labels in each task. They
are summed up to 100%.

1. Confidence estimation CRF DBRNN DBLSTM
Classification accuracy 84.32 85.52 85.63

F-score Correct (76.93) 90.16 90.95 90.94
Incorrect (23.07) 66.77 69.23 69.24

2. OOV word detection CRF DBRNN DBLSTM
Classification accuracy 94.29 94.61 94.60

F-score In-vocab. (94.07) 97.19 97.21 97.20
OOV ( 5.93) 43.72 47.02 47.54

3. CSI classification CRF DBRNN DBLSTM
Classification accuracy 82.13 83.33 83.25

F-score Correct (76.93) 90.27 90.96 90.97
Substitution (18.30) 59.58 61.87 61.89

Insertion ( 4.77) 39.22 43.96 43.93

4. Deletion error detection CRF DBRNN DBLSTM
Classification accuracy 96.25 96.45 96.45

F-score No deletion (96.44) 98.20 98.22 98.22
Deletion ( 3.56) 30.01 34.30 33.38

4.1. Experimental Settings

The ASR settings were basically the same as those described in
[15, 23, 24]. A discriminatively trained GMM-HMM-based acous-
tic model [29] and a word trigram with a 16.5k vocabulary size were
used in the SOLON decoder [30].

The classifier training data consisted of 215 hours (238 lectures)
of speech (114k utterances and 2M words). The development data
consisted of 2.3 hours (2 lectures) of speech (3k utterances and 22k
words). And the evaluation data consisted of 7 hours (8 lectures)
of speech (6.5k utterances and 72k words). ASR was conducted
on these data and the features listed in Table 1 were extracted. The
labels for each of the ASR error detection tasks shown in Fig. 2 were
also obtained with SCLITE [26] using the reference transcriptions.

Using the pairs of features and labels of the training data, we
trained the DBRNNs for each of the ASR error detection tasks. We
used RNNLIB [31–33] for the training. We modified this tool to
make it possible to efficiently process the sparse input feature vec-
tors. The weight matrices and bias terms in the DBRNNs were ran-
domly initialized and then updated with the stochastic gradient de-
scent and the backpropagation through time, which was truncated at
the beginning and end of an utterance, based on the minimization
of cross-entropy error. The training was early terminated by track-
ing the classification accuracies for the development data. From the
results of the preliminary experiments, we set the structure of the
DBRNNs so that there were three hidden layers and 20 nodes at each
hidden layer. Thus, a one hot sparse word vector 16.5k in size was
projected into a 40(= 20(forward) + 20(backward))-dimensional
continuous space dense word vector.

We also trained the CRFs for each of the ASR error detection
tasks using CRF++ [34]. The observation feature functions were de-
signed to take account of the input feature vectors across the preced-
ing and succeeding two words, i.e. the contextual input feature vec-
tor for the five words. The bigram dependency of the output labels
was also considered by designing the transition feature functions.

In addition to the CRFs and DBRNNs, we also trained and
evaluated deep feedforward NNs and deep unidirectional RNNs.
However, their performance fell between those of the CRFs and
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DBRNNs. Thus, we do not describe their results to save space.
Hereafter, the CRFs are denoted “CRF”. The DBRNNs based on the
standard tanh activation function are denoted “DBRNN” and those
based on the LSTM block are denoted “DBLSTM”.

4.2. ASR Error Detection Results
Table 2 shows the results of ASR error detection. In addition to the
classification accuracies, the F-scores for detecting each type of la-
bel are shown. This is because the frequencies of each type of label
are highly unbalanced. We can confirm that the DBRNNs greatly
outperform CRF, especially for the detection of the infrequent error
labels, e.g. OOV, insertion error and deletion error. However, we
cannot confirm the superiority of DBLSTM over DBRNN. We think
that one reason for this is attributable to the relatively short length
(about 11 words on average) of the recognition results for the eval-
uation data. Thus, hereafter, we do not describe the results obtained
by DBLSTM.

4.3. Recognition Rate Estimation Results
Table 3 and Fig. 3 show the estimation results of the recognition
rates. As described in Section 3, recognition rate estimation is eas-
ier than ASR error detection. And both CRF and DBRNN show
very high estimation performance. However, the details confirm that
DBRNN slightly outperforms CRF.

4.4. Experimental Results Using Reduced Size of Training Data
To investigate the generalization ability of the classifiers, we reduced
the size of the training data from 100% to 10% in 10% steps. As
the size of the training data was reduced, the mismatch between the
training and evaluation data became large.

Figure 4 shows the experimental results for the CSI classification
accuracies and the F-scores of insertion error detection (blue and red
curves). When the training data size was reduced from 20% to 10%,
the performance of both CRF and DBRNN quickly degraded. This
indicates that 10% of the data is insufficient to train the classifiers ac-
curately. Thus, by comparing CRF and DBRNN when reducing the
data size from 100% to 20%, we can confirm that the performance
degradation of DBRNN is smaller than that of CRF (in the other
measures, the trends are also similar to these two curves). There
results suggest that DBRNN has a better generalization ability than
CRF. As a result, DBRNN trained using only 20% of the data per-
forms better than CRF trained using the full data.

One idea for further increasing the generalization ability of the
classifiers is to not use the one hot sparse word vectors as in [19].
The experimental results for such a case are also shown in Fig. 4
(aqua and pink curves). In this case, CRF shows a better generaliza-
tion ability than DBRNN since the performance degradation of CRF
is smaller than that of DBRNN when the training data size is re-
duced. However, DBRNN maintains its high absolute performance.
For example, DBRNN without the one hot word vectors and trained
using 30-40% of the data performs better than CRF with the one hot
word vectors and trained using the full data.

5. CONCLUSION AND FUTURE WORK

We applied DBRNNs as the classifiers for ASR error detection and
recognition rate estimation for the first time. Experimental results
showed that the DBRNNs substantially outperformed the CRFs. In
addition, the DBRNNs showed a better generalization ability than
the CRFs. Future work will include improving the performance of
the LSTM based DBRNNs as investigated in [35]. Techniques for
dealing with unbalanced label frequencies will also be required for
further improvement in the detection of infrequent error labels as
indicated in [9].

Table 3. Number of NCSIDs, percent correct rates [%] and word
accuracies [%] for the entire evaluation data (6482 utterances) esti-
mated by CRF and DBRNN. True values are calculated by SCLITE
[26] using reference transcriptions.

#N #C #S #I #D %Cor WAcc
True 72283 55613 13231 3450 3439 76.94 72.16
CRF 71925 54825 13966 3504 3134 76.23 71.35
DBRNN 72314 55735 13312 3246 3267 77.07 72.58
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