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ABSTRACT

This paper addresses reverberant speech recognition based on
front-end processing using DAE (Deep AutoEncoder) coupled with
DNN (Deep Neural Network) acoustic model. DAE can effectively
and flexibly learn mapping from corrupted speech to the original
clean speech based on the deep learning scheme. While this mapping
is conventionally conducted only with the acoustic information, we
presume the mapping is also dependent on the phone information.
Therefore, we propose a new scheme (pDAE), which augments a
phone-class feature to the standard acoustic features as input. Two
types of the phone-class feature are investigated. One is the hard
recognition result of monophones, and the other is a soft represen-
tation derived from the posterior outputs of monophone DNN. In
the evaluation on the Reverb Challenge 2014 task, the augmented
feature in either type results in a significant improvement (7-8% rel-
ative) from the standard DAE. It is also shown that using the soft
representation in the training phase is critical.
Index Terms— Reverberant speech recognition, Deep Neural Net-

works (DNN), Deep Autoencoder (DAE)

1. INTRODUCTION

In recent years, the speech recognition technology based on statisti-
cal techniques achieved a remarkable progress supported by the ever
increasing training data and the improvements in the computing re-
sources. Applications such as voice search are now being used in our
daily life. However, speech recognition accuracy in adverse environ-
ments such as those with reverberation and background noise is still
at low levels. A key breakthrough for the speech recognition technol-
ogy to be accepted widely in the society will be the methodology for
hands-free input. This is critical for realizing conversational robots.
Speech reverberation adversely influences the recognition accuracy
in such conditions and various efforts have been made to solve this
problem.

Reverberant speech recognition has been tackled by feature en-
hancement at the front-end and model adaptation at the back-end.
One of the simplest approaches to feature enhancement is the cep-
stral mean normalization (CMN) [1]. However, since reverberation
time is usually longer than the frame window length for feature ex-
traction, its effectiveness is limited. A major back-end approach is
the use of maximum-likelihood linear regression (MLLR) [2] that
adapts the acoustic model parameters to the corrupted speech.

More sophisticated enhancement techniques for speech recogni-
tion have been investigated. Speech enhancement techniques include
deconvolution approaches that reconstruct clean speech by inverse-
filtering reverberant speech [3][4][5] and spectral enhancement ap-

proaches that estimate and remove the influences of the late rever-
beration [6][7]. Since an improvement measured by SNR may not
be directly related to the speech recognition accuracy, there also are
approaches to speech enhancement based on speech recognition like-
lihoods in the back-end [8].

Recently, following the great success of deep neural networks
(DNN), dereverberation by deep autoencoders (DAE) has been in-
vestigated [9][10][11][12]. In these works, DAEs are trained using
reverberant speech features as input and the clean speech features as
target so that they recover the clean speech from corrupted speech in
the recognition stage. DAE can effectively and flexibly learn map-
ping from corrupted speech to the original clean speech based on the
deep learning scheme.

While this mapping is conventionally conducted only with the
acoustic information, we presume the mapping is also dependent on
the phone information. Since each dimension of the acoustic fea-
ture such as filterbank output has a different range of values depend-
ing on phones, the information on “which phone-class the current
speech frame belongs to” should be helpful for DAE to recover the
clean speech from reverberant speech. In this paper, we propose a
new scheme of DAE, which incorporates a phone-class feature as ad-
ditional input. We investigate two types of the phone-class feature:
soft and hard features. We evaluate the effect of these features in the
training and recognition stage through the ASR task of the Reverb
Challenge 2014 [13].

After a brief review on DNNs for reverberant speech recogni-
tion (DAE front-end and DNN-HMM back-end) in Section 2, the
detail of the proposed method is explained in Section 3. Experimen-
tal evaluations of the method are presented in Section 4 before the
conclusion in Section 5.

2. DNN FOR REVERBERANT SPEECH RECOGNITION

Deep neural hidden Markov models (DNN-HMMs) have outper-
formed GMM-HMMs drastically in the wide range of speech recog-
nition tasks [14][15][16][17] and become a state-of-the-art acoustic
modeling method. One of the advantages of the DNN-HMMs is that
they are good at exploiting multiple frames, which is vital especially
for reverberant speech recognition where we need to handle long-
term artifacts.

DNNs are also applied to front-end feature enhancement in ro-
bust speech recognition area [18][9][10][11][19][20]. DNNs used
for regression tasks such as speech enhancement are often called
DAEs [21]. Unlike DNNs for classification, DAEs are typically
trained to reconstruct signals usually using error backpropagation
with the mean squared error as the loss function [22]. DAEs for
speech enhancement are trained using the clean speech features as
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Fig. 1. Baseline system combining DAE front-end and DNN-HMM
back-end

target and the corrupted speech features as input (denoising autoen-
coders [23]). DAE-based dereverberation has also been investigated
recently [9][10][11][12].

In [12], we proposed to use deep learning both in front-end
(DAE-based dereverberation) and back-end (DNN-HMM acoustic
model) in a reverberant speech recognition system. Since the dere-
verberation using the DAE is performed on not the STFT level ([9])
but the feature level ([10][11]) in our system, we can directly feed
the DAE output to the DNN-HMM acoustic model. While the DNN-
HMM trained using the multi-condition data significantly outper-
formed the MLLR-adapted baseline GMM-HMM system even when
used alone, the combination of the multi-condition DNN-HMM and
the DAE for dereverberation complementarily achieved further im-
provement in very adverse reverberant conditions. In this study, we
also adopt this framework illustrated in Fig. 1. Our DNN-HMM
models are built using the standard recipe described in [16]. The
DAE has a vertically symmetric network structure and each layer is
initialized by an RBM in the same manner as in [21]. We use the
identity function as the output function of the DAE. The input fea-
ture vector of both of DNN and DAE consist of multiple frames of
filterbank output. Note that the DNN-HMM model is trained using
not the DAE-enhanced data but the original multi-condition data.

3. PROPOSED METHOD

3.1. pDAE using phone-class information

Recently, extension of the DNN-HMMs is ivestigated by augment-
ing additional information as input, for example speaker adapta-
tion using I-Vectors [24][25] and noise-aware training [26]. Saon
et al. [24] proposed a method to train a single network that con-
ducts speaker adaptation and phone classification simultaneously by
feeding I-Vectors (speaker identity features) to the network. Speaker
identity features are helpful, considering that different speakers often
use different pronunciations for the same phone.

In this work, we propose to augment a phone-class feature as an
additional input of the DAE to enhance the dereverberation perfor-
mance. Since the acoustic features in clean speech vary depending
on phones, the phone-class information is expected to be helpful for
the DAE to recover the clean speech from corrupted speech. We re-
fer to this proposed DAE as pDAE. The training procedure of pDAE

Fig. 2. Feature enhancement by pDAE using PCsoft features

is same as the standard DAE, except that the input is augmented with
an additional phone-class feature of the center frame of the input.

The concept of the proposed method is similar to the stochastic
matching proposed by Sankar et al. [27], where the feature normal-
ization is conducted by a function that depends on the phone infor-
mation. In this work, the mapping is done by the more general deep
learning schema (DAE).

3.2. Phone-class features

Two types of the phone-class feature are investigated in this study:
soft and hard features.

The soft phone-class feature PCsoft is a soft representation of
phone classification. It is derived with phone state posteriors cal-
culated with a DNN trained for phone state classification. Note
that we use monophone state posteriors (135-dimensional) instead
of triphone state posteriors (3,113-dimensional) which are used in
the acoustic model, in order to keep the dimensionarity of the input
vector not much larger than the original vector (440-dimensional) 1.
The monophone DNN was trained using the same multi-condition
data used for the triphone DNN training. pDAE using the PCsoft

feature is illustrated in Fig. 2. This is similar to the MLP-derived
features used in the TANDEM approach [28][29][30].

The hard phone-class feature is encoded using a 1-of-K scheme.
The element corresponding to the phone-class which has the largest
posterior probability is 1, and all other classes are 0. We can simply
use the hard version of the DNN-derived PCsoft feature, which is
referred to as PChard.

In the training data for which manual transcription is available,
we can derive the oracle PChard feature. We refer to this specific
type of the hard feature as PCoracle

hard . We can generate a phone
HMM state label for each frame in the training data by performing
forced alignment using the manual transcription. In the PCoracle

hard

feature vector, the element corresponding to the correct state is 1.
However, we cannot use the PCoracle

hard feature in the recognition
stage. Instead, we use the speech recognition result of the test data

1Actually, the performance of the pDAE was degraded slightly when us-
ing triphone DNN posteriors as the phone-class feature in a preliminary ex-
periment.
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Table 1. Speech recognition performance on Reverb Challenge 2014 test set (word error rate (%))

SimData RealData
Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far Near Far
(1) GMM-HMM (mc, w MLLR) 12.39 12.71 14.23 26.23 17.11 33.92 19.43 42.89 42.27 42.59
(2) DNN-HMM (cln) 6.85 10.22 16.18 45.52 23.12 60.25 27.05 65.25 66.78 65.99
(3) DNN-HMM (cln) + DAE 6.25 6.78 7.65 13.67 9.04 16.75 10.03 30.66 31.87 31.25
(4) DNN-HMM (cln) + pDAE (PCsoft) 5.51 6.44 7.06 12.74 8.17 14.26 9.04 27.37 26.60 27.00
(5) DNN-HMM (cln) + pDAE (PCdecode

hard ) 5.18 6.12 7.14 12.57 7.66 12.42 8.54 27.75 26.60 27.20
(6) DNN-HMM (mc) 5.42 6.37 7.27 12.56 7.85 12.90 8.74 28.59 30.87 29.67
(7) DNN-HMM (mc) + DAE 9.30 9.69 8.36 11.92 9.30 15.25 10.62 24.37 25.52 24.93
(8) DNN-HMM (mc) + pDAE (PCsoft) 8.59 9.13 7.77 11.53 8.74 13.53 9.87 23.47 23.09 23.29
(9) DNN-HMM (mc) + pDAE (PCdecode

hard ) 7.29 7.86 7.48 10.87 8.09 11.06 8.78 22.74 22.96 22.85

to derive a hard phone-class feature, referred to as PCdecode
hard . The

phone HMM state labels are generated by performing forced align-
ment using the initial recognition result. The PCdecode

hard feature is
expected to be more reliable than the PChard feature, because the
initial recognition result is generated using a triphone model as well
as a language model. But computation of the PCdecode

hard feature re-
quires an extra decoding pass and is not suitable for on-line real-time
processing. Note that it is not straightforward to derive a soft feature
on the monophone states from the recognition result.

In our implementation, the dimension of these features is set
to be same as the number of the states in the baseline monophone
GMM-HMM. Therefore, we can use different types of the phone-
class feature in the training and recognition stage.

4. EXPERIMENTAL EVALUATIONS

4.1. Task and data set

The proposed system was evaluated following the instructions for the
task of the Reverb Challenge 2014 [13]. For training, we used the
standard multi-condition data that is generated by convolving clean
WSJCAM0 data with room impulse responses (RIRs) and subse-
quently adding noise signals. The amount of the training data is 15.5
hours (7,861 utterances). Evaluation data consists of “SimData” and
“RealData”. SimData is a set of reverberant speech generated by
convolving clean speech with various RIRs and adding measured
noise signals to make the resulting SNR to be 20dB. RIRs were
recorded in three different-sized rooms (small, medium, and large)
and with two microphone distances (near=50cm and far=200cm).
The reverberation time (T60) of the small, medium, and large rooms
are about 0.25s, 0.5s, and 0.7s, respectively. RealData was recorded
in a different room from those used for measuring RIRs for Sim-
Data. It has a reverberation time of 0.7s. There are two microphone
distances in RealData, which are near (≈100cm) and far (≈250cm).

In the experiments in this paper, we only use a single channel
both for training and testing. For decoding, we used the HDecode
command from HTK-3.4.1 with a small modification to handle DNN
output. The language model we used is the standard WSJ 5K trigram
model. The training tools for the DNN-HMM and DAE were imple-
mented using Python.

4.2. Evaluation of DAE coupled with DNN-HMM

Here we describe the details of the baseline system illustrated in
Fig. 1.

A 1320-dimensional feature vector consisting of eleven frames
of 40-channel log Mel-scale filterbank outputs and their delta and
acceleration coefficients is used as input to the DNN-HMM. We per-
formed utterance-based mean normalization as well as global mean
and variance normalization to these feature vectors. The targets are
chosen to be the 3,113 shared states of the baseline GMM-HMM.
The six-layer network consists of five sigmoidal hidden layers and
a softmax output layer. Each of the hidden layers consists of 2,048
nodes. The network is initialized using RBMs trained with multi-
condition data. The fine-tuning of the DNN is performed by error
backpropagation supervised by state labels using cross entropy as the
loss function. The training parameters such as the learning rate are
same as those in [12]. We trained two DNN-HMM systems (”DNN-
HMM (mc)”, ”DNN-HMM (cln)”) using the multi-condition data
and the clean version of the training data.

The input for the DAE was an eleven-frame sequence of 40-
channel log Mel-scale filterbank outputs (440-dimensional). The tar-
get for the DAE was one frame (40-dimensional) of the clean speech
which corresponds to the center frame of the input. The DAE is
trained using reverberant speech as the input and clean speech as
the target. The network is also initialized using RBMs trained with
multi-condition data. The autoencoder network has seven layers in
total including five sigmoidal hidden layers. The number of nodes
in each layer is 2,048 except for input and output layers (Fig. 1).
The fine-tuning of the DAE was performed by error backpropagation
with mean squared error as the loss function. The training parame-
ters are same as those in [12]. The delta and acceleration parameters
are added to the DAE output after global normalization. We splice
the output of the eleven consecutive frames before feeding to the
DNN-HMM.

The evaluation results with the baseline systems are shown in
row (2), (3), (6) and (7) in Table 1. The DNN-HMM trained using the
multi-condition data outperformed the MLLR-adapted GMM-HMM
drastically in all conditions (from row (1) to row (6)), concluding
that the multi-condition training of DNN-HMM is very effective for
reverberant speech recognition. The speech feature enhancement us-
ing the DAE improved the performance of the DNN-HMM trained
with the clean data drastically (row (3)), which has a very high WER
when used alone (row (2)). The combination of the DAE front-
end and the multi-condition DNN-HMM significantly improved the
WER for very adverse “RealData” conditions (row (7)), while it was
not effective for “SimData” conditions, which have similar RIRs to
the training data. 2

2Although these results have the same tendency as those reported in [12],
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Fig. 3. Frame accuracy by DAE and pDAE on held-out set

4.3. Evaluation of the proposed method (pDAE)

We evaluated the dereverberation performance of the proposed
pDAE. The training procedure for pDAE is same as that for the
baseline DAE, except that the input vector is augmented with the
135-dimensional phone-class feature. The input layer of pDAE has
575 (135 + 440) nodes. The mean and variance of the phone-class
feature vector are normalized in the same manner as the filterbank
feature. The frame accuracy obtained on the held-out set during the
fine-tuning of the pDAE and the baseline DAE is shown in Fig. 3.
Here we used PCsoft as the phone-class feature. The frame accu-
racy was calculated using the clean DNN-HMM back-end and out-
puts of the DAE and the pDAE at the end of each epoch. We observe
that the DAE augmented with the DNN state posteriors (pDAE) is
consistently better than the baseline DAE, suggesting that feeding
the phone-class information to the DAE is effective.

The evaluation results with the combination of the pDAE
(PCsoft) and the clean DNN-HMM back-end are shown in Table 1,
row (4). In all of “SimData” conditions, the WER was reduced from
the baseline DAE (Table 1, row (3)). In more adverse “Far” condi-
tions in “Room 2” and “Room 3”, the improvements were larger. In
“RealData” conditions, the WER was reduced by 4.25 points from
the baseline DAE, and the improvement was significantly higher
than in “SimData”. The phone-class information is more effective
when the mismatch between the training data and the test data is
larger.

The WER with the combination of the pDAE (PCsoft) and the
multi-condition DNN-HMM back-end is shown in Table 1, row (8).
In all of “SimData” conditions, the performance degradation ob-
served in the combination of the multi-condition DNN-HMM and
the standard DAE front-end (Table 1, row (7)) was mitigated by us-
ing the pDAE. In “RealData”, the average WER was reduced by 1.64
points from the baseline DAE, confirming that the phone information
is effective even when using the multi-condition DNN-HMM back-
end, which is more robust for reverberant speech. The improvement
from the standard DAE in both “SimData” and “RealData” condi-
tions is statistically significant at the 1% level.

the WERs here are much lower than in [12] mainly because we used the tri-
gram language model in this paper and the conclusions are more statistically
reliable.

Table 2. Comparison of phone-class features (word error rate (%))

recognition \ training PCsoft PCoracle
hard

PCsoft 23.29 24.10
PChard 23.27 24.34
PCdecode

hard 22.85 23.29
(cf.) PCoracle

hard 13.74 14.25

4.4. Comparison of soft and hard phone-class features

Next we compared the two types of the phone-class feature described
in Sec. 3.2. We evaluated six different combinations of the fea-
tures in the training and recognition stage through speech recog-
nition experiments on “RealData” using the multi-condition DNN-
HMM back-end.

Comparison of PCsoft and PCoracle
hard in the training stage is

shown in the two columns in Table 2. The dereverberation perfor-
mance of the pDAE is degraded by using the PCoracle

hard feature in the
training stage, whichever type of the phone-class feature is used in
the recognition stage, although the PCoracle

hard feature is more accu-
rate than the PCsoft feature. One of the reason for this may be that
the PCsoft feature has richer information.

We also conducted an oracle experiment where we used the
PCoracle

hard feature derived from the manual transcription of the test
data. As shown in the last row of Table 2, the WER was surprisingly
reduced, which clearly confirms our hypothesis that phone-class in-
formation is useful for DAE-based dereverberation. However, the
hard version of the PCsoft feature (PChard) did not yield any im-
provement.

On the other hand, the results with the PCdecode
hard feature de-

rived from the initial recognition result is better than those with the
PCsoft feature as expected, though it requires another recognition
pass. The WER in all reverberant conditions including “SimData”
obtained with the PCdecode

hard feature is shown in row (5) and (9) in
Table 1. When combined with the multi-condition DNN, the WER
was further reduced in all conditions from the PCsoft feature (row
(4) and (8)).

5. CONCLUSION

We have proposed a novel approach to reverberant speech recogni-
tion with front-end preprocessing using deep autoencoders (DAE)
augmented with the phone-class information. The proposed method
significantly and consistently improved the recognition accuracy in
all reverberant conditions. We compared two types of the phone-
class feature and concluded that the PCsoft feature which does not
require an extra decoding step is enough for significant improve-
ment, while using the PCdecode

hard feature in the recognition stage can
yield further improvement. It is also shown that using the PCsoft

feature is more effective than the PCoracle
hard feature in the training

phase.
The average WER on “RealData” obtained with the proposed

pDAE using the PCdecode
hard feature (Table 1, row (9)) was 1.0 points

better than the best result in the same condition (“1ch”, “no own
data”, “no full batch”) of Reverb Challenge 2014.
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