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ABSTRACT

Recent studies in speech recognition have shown that the perfor-
mance of convolutional neural networks (CNNs) is superior to that
of fully connected deep neural networks (DNNs). In this paper, we
explore the use of CNNs in far-field speech recognition for deal-
ing with reverberation, which blurs spectral energies along the time
axis. Unlike most previous CNN applications to speech recognition,
we consider convolution in time to examine whether it provides an
improved reverberation modelling capability. Experimental results
show that a CNN coupled with a fully connected DNN can model
short time correlations in feature vectors with fewer parameters than
a DNN and thus generalise better to unseen test environments. Com-
bining this approach with signal-space dereverberation, which copes
with long-term correlations, is shown to result in further improve-
ment, where the gains from both approaches are almost additive. An
initial investigation of the use of restricted convolution forms is also
undertaken.

Index Terms— Far-field speech recognition, reverberation, con-
volutional neural network, deep neural network

1. INTRODUCTION

While speech recognition technology has matured to the point where
it is utilised in a range of applications, far-field speech recognition
remains a challenge. When a human voice is captured with a mi-
crophone at some distance from a talker in an enclosed space, such
as a meeting room or a living room, the audio signal observed by
the microphone is corrupted by reverberation and background noise,
which impairs the speech quality. Even with Deep Neural Network-
Hidden Markov Model (DNN-HMM) hybrid acoustic models [1–3]
trained on corrupted data, the performance gap between far-field and
close-talking set-ups is still large as demonstrated in the AMI meet-
ing transcription task [4, 5] and the REVERB challenge task [6].

Since the effect of reverberation spans a number of consec-
utive time frames, far-field speech recognition systems have to
account for the long-term statistical dependency inherent in the
captured audio [7]. For conventional acoustic models based on
Gaussian Mixture Model-Hidden Markov Models (GMM-HMMs),
various approaches have been proposed for dealing with rever-
beration, ranging from signal enhancement techniques—such as
Weighted Prediction Error (WPE) minimisation [8] and Bayesian
filtering [9]—to dedicated modelling approaches—such as Direct
CMLLR [10], REMOS [11], and Reverberant Vector Taylor Series
(RVTS) compensation [12]. Of these techniques, signal-space con-
volution methods such as WPE were shown to be effective even for
DNN-HMMs [6, 13].

DNN-HMM acoustic models already use a longer acoustic

context (typically in the 100–200 ms range) than conventional
GMM-HMMs by splicing feature vectors within a context win-
dow. The conventional DNN-HMMs model correlations between
different frames within the window by using a fully connected net-
work, which requires many parameters to be learned. On the other
hand, the correlations that result from reverberation may be well
organised since the reverberation effect can be (approximately) de-
scribed with a small number of parameters in the power spectrum
domain [14, 15]. If we could utilise a structured model to represent
the reverberation-specific correlations with fewer parameters, the re-
sultant model would generalise better to unseen environments than
conventional DNN-HMMs. Compact models would also be useful
when performing adaptation with a small quantity of data.

To model reverberation more efficiently, we consider using
CNNs with convolution performed along the time axis. The con-
volution layer used in this paper performs multi-input multi-output
convolution through an entire input sequence. The convolution layer
shares weights among different connections by assuming that the
relationship between neighouring frames does not vary over time.
Such weight sharing significantly reduces the number of parameters
to optimise. A causal linear filter is used to deal with reverberant
noise, whose effect stems from the current and past frames. Al-
though the impact of reverberation on acoustic features is highly
nonlinear, we assume it to be approximated to some extent with a
linear model [10, 16]. A pooling layer, which has often been com-
bined with the convolution layer in previous studies, is not used in
this work as pooling in time does not seem to improve the rever-
beration modelling capability. Fully connected layers are stacked
on top of the convolution layer to compute HMM state posteriors
with which Viterbi decoding is performed. In addition to using the
CNNs, we also investigate the combined effect of the CNNs and
WPE, which is a dereverberation method based on signal-space
convolution.

In the remainder of this paper, Section 2 briefly discusses links
between this work and previous studies. Section 3 describes the
CNN-DNN-HMM framework used in this work. Section 4 shows
experimental results and Section 5 concludes the paper. Appendix A
provides a brief description of the WPE method. In the following,
we use the term DNN to refer to a fully connected neural network.

2. RELATION TO PREVIOUS WORK

2.1. Acoustic Modelling with CNNs

In the speech recognition literature, there have been a few attempts
to use CNNs along the time axis. Tóth performed phone recogni-
tion using a stacked DNN-HMM hybrid system [17] consisting of
two DNNs that are organised hierarchically and trained jointly [18].
He called the lower level, or torso, DNN a CNN in light of the fact
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that this network is applied to several different portions of an in-
put feature sequence. However, since the torso DNN used in that
work disregards the temporal order of feature vectors, it does not
seem to serve as a reverberation model. Abdel-Hamid et al. [19]
experimented with CNNs that were applied through time. They
reported little performance improvement compared with standard
DNN-HMMs while significant gains were obtained from convolu-
tion along the frequency axis. Sainath et al. [20] empoloyed two-
directional filters, where convolution was performed through time
and frequency.

In this paper, we apply a one-directional convolution operation
with a causal filter through an entire feature vector sequence prior to
context extension (see the diagram in Fig. 1). This is equivalent to
extending the context window to the left. Our motivation for using
this structure is to capture the sequential nature of reverberation more
effectively than is possible with the previous approaches.

2.2. Far-Field Speech Recognition

There have been a limited number of studies on DNN-HMM acous-
tic modelling for far-field speech recognition. Swietojanski et al. ap-
plied a CNN-DNN-HMM approach to a meeting transcription task
based on a table-top microphone array, where convolution was per-
formed across microphones [21]. Yoshioka et al. examined the
impact of dereverberation processing on the performance of DNN-
HMMs in the meeting transcription task [13]. A few systems that
participated in the REVERB challenge employed DNN-HMMs for
acoustic modelling while none of them used CNNs [6, 22–24]. Su-
pervised enhancement approaches using stereo corpora [25, 26] can
possibly be applied to far-field speech recognition although few stud-
ies have been performed to evaluate these approaches in far-field
tasks.

3. CNN-DNN-HMM WITH CONVOLUTION IN TIME

Figure 1 shows the processing flow of our proposed recognition
system based on CNN-DNN-HMMs. A speech signal observed
with a microphone is processed by a dereverberation method called
WPE [8] to mitigate the reverberation effect in the signal space.
Then, the dereverberated audio is converted into a sequence of fea-
ture vectors using a window of 25 ms shifted by 10 ms. We use
24-channel log mel-filter bank outputs plus their first and second-
order delta coefficients as acoustic features. The resultant feature
vectors are normalised so that they have a zero mean and unit vari-
ance in each dimension. We perform mean normalisation at an
utterance level and variance normalisation at a corpus level. Nor-
malisation processing is followed by a convolution layer, or a CNN,
which applies a multi-input multi-output linear filter to the nor-
malised 72-dimensional feature vector sequence. At each frame,
the filter outputs are spliced with neighbouring frames within a
context window and input to a fully connected DNN to produce
HMM state posteriors. At training time, the CNN and DNN param-
eters are jointly optimised using state alignments generated with a
baseline GMM-HMM system. Cross-entropy training is performed
with Stochastic Gradient Descent (SGD). At test time, the HMM
posteriors produced by the CNN-DNN are translated into pseudo
likelihoods to perform Viterbi decoding.

3.1. Convolution Layer

The convolution layer in the left pipeline in Fig. 1 acts as follows.
Let xt denote a 72-dimensional feature vector, comprising static,
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Fig. 1. Processing flow diagram of the proposed system: (left path)
original form; (right path) equivalent form.

delta, and delta-delta log mel-filter bank outputs. Convolution is
performed on the feature vector sequence, (xt)t=0,··· ,T−1, as follows:

yt = σ

(K−1∑
k=0

Akxt−k +b

)
, (1)

where T is an utterance length measured with the number of frames,
K is a filter (i.e., convolution) order, and σ(·) denotes an activation
function. Each Ak is an M-by-N matrix while b is an M-dimensional
bias vector. A0, · · · ,AK−1 constitute the multi-input multi-output
filter of the convolution layer. In our case, N corresponds to the
feature vector dimensionality, i.e., 72. Following [27], we refer to M
as the number of feature maps. In (1), the input sequence is extended
to the left by K − 1 frames with x0 to compute the outputs at the
beginning of an utterance. After computing the convolution layer
outputs, yt−L, · · · ,yt+L are input into the DNN at each frame t.

The CNN-DNN described above can be implemented using ex-
isting codes for CNN processing. Figure 2 illustrates the way in
which the CNN-DNN translates feature vectors into state posteri-
ors for frame t. The picture shows that the forward pass of our
CNN-DNN can be realised by: 1) extending the context window by
K − 1 frames to the left; 2) applying the extended context window
directly to raw feature vectors; 3) performing convolution within
the extended context window without frame padding at the window
edges, which yields the same number of output frames as the origi-
nal context window size; and 4) forwarding the convolution outputs
through the DNN. This means that our CNN-DNN can be imple-
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Fig. 2. Computation of HMM state posteriors. Arrows with the same
line type (solid, dashed, or dash-dotted) share connection weights in
the convolution layer.

mented by using the right pipeline in Fig. 1. With this approach,
back-propagation can be performed in a conventional way.

3.2. Structured Forms of Convolution

It is possible to impose a structure on the convolution matrices in (1)
to take advantage of the characterstics of input feature vectors. The
simplest structure would be a diagonal convolution matrix, where
Ak is assumed to be diagonal for all k values. The use of diago-
nal matrices makes sense when log mel-filter bank features are used
since reverberation can be assumed to affect each filter bank sepa-
rately in ordinary rooms. The use of diagonal matrices significantly
reduces the number of parameters to optimise. An alternative struc-
ture that can be reasonably imposed on Ak is a block diagonal form.
Using block diagonal matrices allows features belonging to the same
class (static, delta, delta-delta, etc.) to be processed jointly. In our
experiments, we consider full and diagonal matrices.

4. EXPERIMENTAL RESULTS

4.1. Set-ups

We examined the performance of our proposed CNN-DNN-HMM
approach on the corpus provided by the REVERB challenge [28,29].
The challenge was held in 2014 to evaluate speech recognition sys-
tems in far-field set-ups. The test set comprises simulated data (Sim-
Data) and real recordings (RealData), where the SimData were gen-
erated by convolving room impulse responses with anechoic speech
signals followed by the addition of a moderate amount of back-
ground noise. The training data consist of 15 hours of far-field
speech signals that were generated by simulation. Since the train-
ing set contains no real recordings, there is a significant acoustic
mismatch between the training data and the RealData. A single-
microphone set-up was considered.

Our recognition systems used acoustic features consisting of 24
log mel-filter bank outputs plus their delta and delta-delta coeffi-
cients, which were context-extended with a symmetric window of
nine frames. The DNNs had five hidden layers each with 1024 neu-
rons and 3129 output neurons, or target HMM states. State align-
ments were generated for the training set by using a maximum like-
lihood GMM-HMM acoustic model. DNN training was performed
with layerwise discriminative pre-training [30] followed by cross-
entropy fine-tuning, where optimisation was performed with SGD

using a minibatch of 128 frames. During fine-tuning, after each
training epoch, cross entropy was evaluated on a 5% held-out set and
the learning rate was halved if there was no cross entropy improve-
ment over the previous iteration. Fine-tuning was stopped once the
learning rate had been reduced six times. These configurations were
tuned to our baseline DNN-HMM system. CNN-DNN-HMM sys-
tems had the same number of layers as the DNN baseline systems,
i.e. one convolution layer plus four fully-connected hidden layers.
72 feature maps were used with a linear activation.

For decoding, we used both trigram and recurrent neural net-
work (RNN) language models (LMs). When performing RNN
decoding, LM scores were computed by interpolating trigram and
RNN scores with an interpolation coefficient of 0.5.

4.2. Results
Table 1 shows the performance of CNN-DNN-HMM systems with
raw (i.e., non-dereverberated) data. The use of CNNs with low or-
ders (S2–S5) yielded gains over the baseline DNN-HMM system
(P1) on RealData with both decoding schemes (i.e., trigram and
RNN) while neither significant improvement nor degradation was
observed on SimData. The larger acoustic mismatch between the
training set and RealData than between the training set and SimData
means that the CNN-DNN-HMM systems are more robust against
environmental mismatch than the conventional DNN-HMM system
while both systems exhibit a comparable modelling capability in far-
field speech recognition. To our disappointment, increasing the fil-
ter order in the CNN-DNN-HMMs gradually degraded the perfor-
mance, indicating that CNNs with temporal convolution are useful
for modelling the short-term correlations that exist in feature vectors.
This is probably because the CNNs start to capture irrelevant acous-
tic aspects that manifest themselves only in the training set when the
convolution order is long.

Table 1. %WERs of proposed CNN-DNN-HMM systems using raw
microphone signals.

System
Filter Trigram RNN
order Sim Real Sim Real

P1 — 8.39 27.7 7.39 26.4

S2 2 8.49 25.5 7.60 23.8
S3 3 8.64 26.7 7.57 24.4
S4 4 8.50 26.8 7.46 26.2
S5 5 8.46 26.7 7.63 25.5
S6 6 8.64 27.2 7.75 25.9
S7 7 8.46 27.6 7.69 26.2
S8 8 8.39 27.2 7.20 25.9
S9 9 8.75 28.1 7.71 26.8

A simple approach to coping with both short- and long-term cor-
relations resulting from reverberation is to preprocess input signals
with a dereverberation technique prior to recognition with the CNN-
DNN-HMMs. To validate this approach, the same investigation was
conducted using dereverberated data as inputs. We performed dere-
verberation with the WPE method [8]. Table 2 shows the WER re-
sults. As with the results in Table 1, gains were obtained on RealData
when low-order filters were used in CNNs although the gains were
small with RNN decoding. The results show the gains from signal-
space convolution (i.e., dereverberation) and feature-space convo-
lution (i.e., CNN processing) to be almost additive. With the best
configuration, we achieved overall relative improvements of 15.9%
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Table 2. %WERs of proposed CNN-DNN-HMM systems using sig-
nals dereverberated with WPE.

System
Filter Trigram RNN
order Sim Real Sim Real

Q1 — 7.30 25.3 6.42 23.5

T2 2 7.28 23.3 6.19 22.5
T3 3 7.19 24.6 6.36 23.0
T4 4 7.24 24.4 6.56 23.3
T5 5 7.35 24.1 6.48 23.5
T6 6 7.47 24.3 6.57 23.9
T7 7 7.62 25.2 6.68 23.8
T8 8 7.70 27.0 6.74 26.5
T9 9 7.55 26.8 6.71 25.6

and 14.8% with trigram and RNN decoding, respectively, compared
with P1 system for RealData.

Table 3. %WERs of proposed CNN-DNN-HMM systems using the
same temporal coverage as the baseline. Inputs to the systems were
signals dereverberated with WPE.

System
Filter Trigram RNN

order (K) Sim Real Sim Real

Q1 — 7.30 25.3 6.42 23.5

U2 2 7.25 23.9 6.43 22.4
U3 3 7.02 24.6 6.25 22.7

One possible concern is that the gains obtaind in the experi-
ments described above resulted from the extended temporal cover-
age of the CNN-DNN-HMMs rather than the use of CNNs because
a convolution operation effectively extends the period of time that an
overall system can cover. To check that this was not the case, we
performed experiments using a truncated context window in CNN-
DNN-HMM systems. Here, we spliced convolution layer outputs by
using a (4−K + 1)-left 4-right context window where K is the filter
order so that the time period covered by the CNN-DNN-HMM sys-
tems became the same as that of the baseline system. Table 3 shows
the WER results. We can see that using the CNNs produced similar
gains to those in Table 2, which implies that the convolutional struc-
ture is the primary cause of the performance gains. Although the
results described above show that CNN-DNN-HMMs with temporal
convolution are more robust against mismatches between training
and test environments than conventional DNN-HMMs, it has yet to
be clarified whether this improvement is the result of capturing the
characteristics of far-field speech. Further investigation is required
to clarify the impact of temporal convolution-based CNNs under var-
ious conditions.

Table 4. Comparison of full-matrix convolution and diagonal-matrix
convolution. Dereverberated signals and trigram decoding was used.

Filter Sim Real
order Full Diag Full Diag
(K) (Tx in Tab.2) (Tx in Tab.2)

2 7.28 7.11 23.3 25.0
4 7.24 7.28 24.4 24.1
6 7.47 7.41 24.3 24.7
8 7.70 7.55 27.0 25.4

The performance with diagonal convolution matrices was also
investigated. Table 4 compares the performance of a diagonal con-
volution scheme with that of a full convolution scheme. From these
results, the diagonal convolution scheme appears to be slightly less
sensitive to the choice of filter order probably because of its fewer
adjustable parameters. Note that the diagonal convolution scheme
can be used only for filter bank features since it assumes that rever-
beration affects each feature dimension separately.

5. CONCLUSION

In this paper, we examined the performance of CNN-DNN-HMM
acoustic models with convolution in time for far-field speech recog-
nition. While the CNN-DNN-HMM approach did not improve
the recognition performance in seen test environments, meaningful
gains were obtained for unseen real recordings. Since our results
indicated the CNN-DNN-HMM approach to be useful for modelling
short time correlations, the approach was further combined with
a dereverberation technique based on signal-space convolution to
cope with both short- and long-term correlations. The gains from
the two approaches were found to be additive. From our results,
it is still unclear whether the performance gains achieved in this
paper are limited to far-field set-ups and this will be investigated
in future work. Another interesting direction of future work would
be to adapt or retrain the convolution layer to test environments.
Since the number of convolution parameters is limited, especially
with a diagonal convolution scheme, convolution layer retraining is
expected to allow for rapid adaptation.

A. WPE METHOD FOR SIGNAL-SPACE
DEREVERBERATION

WPE aims at removing the reverberation effect from an observed
acoustic signal, thus generating a less reverberant signal. The
method is based on linear prediction, which means that convolution
is performed in the signal space.

Let yt[k] denote the STFT coefficient of the observed signal,
where t and k are the time frame and frequency bin indices, re-
spectively. WPE convolves the sequence of the STFT coefficients,
(yk[t])0≤t<T , with a linear filter in each frequency bin as follows:

xt[k] = yt[k]−
T�∑
τ=T⊥

g∗τ[k]yt−τ[k], (2)

where ∗ stands for complex conjugation and T denotes an utterance
length measured with the number of frames. T⊥ and T� define the
time period in which the filter has an effect. T⊥ is normally set at
3 while T� has a large value to deal with long-term reverberation.
G = (gT⊥ , · · · ,gT� ) defines the filter and needs to be optimised. The
frequency bin index k is omitted below.

The filter G is optimised to minimise the following objective
function:

FWPE =

T−1∑
t=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣yt −∑T�

τ=T⊥ g
∗
τyt−τ

∣∣∣∣2
θt

+ logθt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

where Θ = (θt)0≤t<T is a set of auxiliary variables. These variables
need to be optimised jointly with G, which leads to interleaved up-
dates of G and Θ. After optimisation has been completed, the re-
sultant filter is applied to (yt)0≤t<T to generate dereverberated STFT
coefficients (xt)0≤t<T , followed by waveform synthesis with an over-
lap add method.
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