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ABSTRACT

The presence of Lombard Effect in speech is proven to have
severe effects on the performance of speech systems, espe-
cially speaker recognition. Varying kinds of Lombard speech
are produced by speakers under influence of varying noise
types [1]. This study proposes a high-accuracy classifier us-
ing deep neural networks for detecting various kinds of Lom-
bard speech against neutral speech, independent of the noise
levels causing the Lombard Effect. Lombard Effect detec-
tion accuracies as high as 95.7% are achieved using this novel
model. The deep neural network based classification is fur-
ther exploited by validation based weighted training of robust
i-Vector based speaker identification systems. The proposed
weighted training achieves a relative EER improvement of
28.4% over an i-Vector baseline system, confirming the effec-
tiveness of deep neural networks in modeling Lombard Effect.

Index Terms— Lombard Effect, deep neural networks,
speaker identification, robust, weighted training

1. INTRODUCTION

Lombard Effect is described as a type of stressed speech pro-
duced by a speaker when exposed to a noisy environment.
This changes neutral speech production in terms of several
reported parameters including duration, pitch, intensity, and
spectral slope [1]. Lombard Effect in speech data has been
shown to severely impact performance of speech systems [1,
2, 3]. Different compensation schemes have been proposed
to counter this impact in speech recognition systems [4, 5, 6]
and a few for speaker identification (SID) systems [1]. Deep
neural networks (DNN) have been proven to work well for
speech recognition tasks [7, 8] but have rarely been applied
for stressed speech classification [9] or speaker recognition
under Lombard Effect.

This study explores the capability of deep neural networks
in extracting information from stressed speech under Lom-
bard Effect. Furthermore, we explore the use of this informa-
tion in building a robust SID system that is resilient towards
the effects of background noise in human speech using meta-
data from the validation phase of DNN training.

2. UT-SCOPE DATABASE

The speech data utilized in this study was drawn from the
UT-SCOPE (Speech under COgnitive and Physical stress and
Emotion) database. Details about the database can be found
in [10]. Speech was collected from speakers under nine dif-
ferent noisy environments. It must be noted that noise was
played through open-air headphones so all data is noise-free
clean speech. Three noise types were considered: large crowd
noise (LCR) at 70, 80, and 90 dB-SPL, highway noise (HWY)
in a car at 70, 80, and 90 dB-SPL, and pink noise (PNK) at 65,
75, and 85 dB-SPL. Neutral speech data was also collected
from the same speakers for comparative analysis. The speech
comprises of 20 phonetically balanced TIMIT sentences, five
repetitions of 10 digits, and spontaneous speech. Speech files
consist of an average of 3 seconds of data, which makes it
challenging for speaker recognition. Subjects included 24 fe-
male and 6 male speakers. After randomizing, 75% of the
data was used as training and validation, while the rest was
used as test data; both for modeling the deep neural network
and the speaker identification system.

3. LOMBARD FLAVOR CLASSIFICATION

It has been shown that speech under Lombard Effect severely
deteriorates speaker identification (SID) systems [1]. This
study will focus on a novel method to significantly reduce
errors in a demanding application like SID.

3.1. DNN Architecture

For features, 39-dimensional Mel-frequency Cepstral Coef-
ficients (MFCC) are extracted, which include static, delta,
and delta-delta coefficients. A 25ms Hamming window with
10ms shift was applied. The feature vectors are normalized
to zero mean and unit variance to enable learning via neural
networks. This normalization is done for the training set only;
the mean and variance on training data is then used to scale
the validation and test data. This paper uses the effectiveness
of deep neural networks in extracting deeper meanings from
simple cepstral features.
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A deep neural network is randomly initialized for classifi-
cation purposes without generative pre-training. Pre-training
using Restricted Boltzmann Machines [11] was found to re-
sult in suboptimal results for Lombard Effect classification.
The architecture comprises of a Multi-layer Perceptron with
sigmoid activation functions in the hidden layers. The visible
layer consists of nodes for feature vector input. The number
of hidden layers tested ranged from 1 to 11, with increased
number for increased classification complexities. The out-
put layer consists of logistic regression nodes employing the
softmax function. This layer enables the DNN to output clas-
sification results as class probabilities which sum to 1. Target
classes are expressed by Y , the weight matrix and bias vector
by W and b respectively.

P (Y = i|x,W,b) = softmaxi(Wx + b)

=
eWix+bi∑
j e

Wjx+bj

(1)

The classification result is obtained by noting the index of the
node with the maximum class probability:

ypredict = argmaxiP (Y = i|x,W,b). (2)

Minimization of cross-entropy error is set as the objective
function, which maximizes target class membership proba-
bilities on training data. The loss function is expressed as
negative log-likelihood,

`(θ = {W,b},D) = −
|D|∑
i=0

log(P (Y = yi|xi,W,b)). (3)

Mini-batch Stochastic Gradient Descent [12] is used to train
the DNN under the backpropagation algorithm. To introduce
better regularization in the DNN model so that it performs
better on test data, L2-norm regularization is applied. Also
called ‘weight decay’, this regularization method prevents
overfitting by preventing the weight parameters from becom-
ing very large.

3.2. Deep Classifier Performance

3.2.1. Lombard and Neutral Speech Classification

The normalized acoustic features are submitted to the net-
work in batches, and the network is trained to classify them
into neutral speech or Lombard Effect. For binary classifica-
tion between neutral speech and any of the Lombard Effect
flavors, 95.7% accuracy was achieved raising existing bench-
marks. A balanced accuracy of 94.9% per class (to take un-
even priors into account) was achieved as mentioned in Table
1.

3.2.2. Lombard Noise-type and Neutral Speech

For the four-way classification task into neutral speech and
three noise-dependent Lombard flavors (LCR, HWY, PNK),

Table 1. Classification Accuracies for Neutral and Lombard
speech types; Unweighted means raw accuracy on test data,
while Balanced means adjusted/weighted accuracy per class.

Classification Neutral/ Neutral, Neutral, Noise
Type Lombard Noise-type -type/level

Classes 2 4 10
Unweighted 95.7 69.1 60.0

Balanced 94.9 66.0 49.4

Table 2. Confusion matrix for 4-way classification between
neutral and Lombard speech (Classification rates are in %,
figures in bold refer to matched train/test conditions).

Test Condition NEU LCR HWY PNK
NEU 94.2 0.7 1.4 3.7
LCR 5.2 43.3 21.7 29.8
HWY 4.6 17.3 62.8 15.3
PNK 6.2 18.1 12.5 63.2

accuracy as high as 69.1% was achieved with DNN. Table
2 shows the confusion matrix for classification results. The
resulting classifier is used for adaptation of a state-of-the-art
SID system in the next section.

3.2.3. Lombard Noise-type, Noise-level and Neutral Speech

Classification was also performed on the same data by further
refining the classified Lombard Effect flavor into the 3 differ-
ent noise levels behind each of them. An overall accuracy of
60% was achieved by a single DNN model in classifying all
9 Lombard flavors (3 noise levels against 3 noise types) and
neutral speech.

3.2.4. Results and Analysis

Referring back to Table 1, it shows DNN classification per-
formance over different combinations of Lombard Effect fla-
vors. Unweighted accuracy is for all samples in testing data
which contain unbalanced classes. Balanced accuracy is cal-
culated to balance class biases. It is evident that the classi-
fier performs well even with slightly biased training for neu-
tral speech and all Lombard Effect flavors. The relatively
larger gap in accuracy when additionally classifying the type
of noise shows that noise-level is more sensitive to classifica-
tion compared to noise-types.

Varying levels of depths were required to achieve effective
classification. Increasing number of hidden layers were em-
ployed as classification complexity increased from binary to
10-way classification. The results show that after careful tun-
ing of neural network parameters (learning rate, momentum,
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Fig. 1. System block diagram of i-Vector based SID for Lombard speech. Data 1 and 2 correspond to raw features for UBM
and TV matrix, respectively. Here, both are the same as training data. ‘Audio data’ reflects all acoustic data used in verification.

regularization, nodes per layer, and number of hidden layers),
even complex phenomena such as Lombard Effect can be ef-
fectively modeled.

4. DNN ASSISTED SPEAKER RECOGNITION

4.1. i-Vector based Speaker Identification (SID) System

The classification system includes feature extraction and
back-end modeling, which is illustrated in Fig. 1. MFCC
features are referred to as raw features, since they can be
further processed into refined features such as i-Vectors. An
i-Vector based system is the state-of-the-art platform for
acoustic event identification, such as SID [13], and language
ID [14, 15, 16, 17]. However, it has not been explored for
Lombard speech. i-Vectors are extracted following factor
analysis [13]. The i-Vector model is represented by:

M = m+ Tω (4)

where T is the total variability matrix, ω is i-Vector, m is the
universal background model (UBM) mean super-vector, and
M is the super-vector derived from raw features. The extrac-
tion converts frame length-varied spectral features matrix into
a fixed-dimension features vector for each speech utterance.

All available training data are employed to train both
the UBM and total variability matrix using the EM algo-
rithm. Next, the i-Vectors for both training and test sets are
extracted with the total variability matrix. 100-dimensional
i-Vectors are used for the purpose of this experiment which
suits the relatively small database used. The extracted i-
Vector of each speech utterance contains both inter-speaker
and intra-speaker variabilities. Therefore, the PLDA classifier
is employed in SID systems [18, 19]. PLDA is also adopted
as back-end classifier here (Fig. 1).

4.2. Training Methods

Four separate SID systems are trained for each type of speech;
under the three Lombard Effect flavors and one for neutral
speech. Test data is classified by the DNN as belonging to

either of these four categories. Based on results from classi-
fier, the test data classified in each class is forwarded to the
SID system trained with the respective class data. The overall
system is illustrated in Fig. 2. Two kinds of approaches are
analyzed in this paper.

4.2.1. Fixed Training

The first method forks speech training data and uses speech
under only a single Lombard Effect or only neutral speech to
train each of the four SID systems. It uses neutral speech to
train one SID system, training data of Lombard Effect speech
under large crowd noise in second SID system, and so on to
train all four SID systems.

4.2.2. Weighted Training

A second more innovative approach is proposed in our study.
The weighted approach makes use of validation results from
DNN to build SID models better adapted for each test dataset
subsequently classified by the DNN. DNN classification re-
sult on validation data is monitored to observe the percentage
of non-target class samples present in each of four classified
sets of data. Since this validation data more closely resembles
the practical results on test data by the classifier, this class
distribution is used to add non-target Lombard Effect speech
samples in the training data for each of the four SID systems.
The additional data for training is added so that training set
classes are probabilistically in the same proportion as the val-
idation set. This makes each of the four speaker identification
systems robust towards samples from another class, be it a
Lombard flavor or neutral speech. This method outperforms
the already high performing baseline trained on all classes as
shown in next section.

5. SPEAKER IDENTIFICATION RESULTS

5.1. Baseline

The baseline SID system is trained with the full set of training
data including neutral speech and all 3 noise-free Lombard
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Fig. 2. System level block diagram of Deep Neural Network interface with SID systems (‘+’ indicates presence of non-target
speech types in test data).

Table 3. SID performance with DNN classifier (%EER); ‘All’
error rates are for all 4 systems combined.

Training NEU+ LCR+ HWY+ PNK+ All
Fixed 1.30 0.20 0.76 0.71 1.27

Weighted 0.75 0.17 0.47 0.47 0.53

Effect flavors. The same i-Vector based SID system was used
for all training methods. The baseline gives an upper bound
on performance because Lombard Effect speech has also been
included in the train data.

5.2. Fixed Training

Fixed training does not exploit all information from DNN
classification. This is because of the presence of around 31%
test samples belonging to other flavors or neutral speech. This
method adversely affects neutral speech in particular because
of the adverse impact of Lombard speech. Table 3 shows the
error rates for each set of test data classified by the DNN as
belonging to a particular type of Lombard or neutral speech.
The test data in each column represents a majority of samples
belonging to a speech type along with misclassified samples
belonging to the other 3 classes.

5.3. Weighted Training

Each of the four SID systems are trained with one of the
Lombard flavors or neutral speech, and a part of non-target
class training data (for each of the three remaining classes)
is included in proportion to the validation data classification
results by DNN. This proportional inclusion prevents the
SID system from being blind to other possible flavors, and
thus avoids overfitting. Table 3 highlights the improvement
over other systems, which is due to the inclusion of training
data for DNN-misclassified speech in training the SID sys-
tem. The proposed system outperforms the baseline system
without DNN classification by +28.4%.

Table 4. EER and Relative Improvement Comparison of dif-
ferent training methods.

DNN classifier Absent Present
Training Baseline Fixed Weighted
EER (%) 0.74 1.27 0.53

Rel. Imp. (%) - -71.6 +28.4

5.4. Discussion

Table 4 highlights overall error rates for the weighted and un-
weighted models in the presence of a DNN classifier, and the
baseline. The probabilistically weighted training method ex-
hibits an overall improvement of +28.4% in EER for the final
task of speaker identification in presence of Lombard speech.
Since the database contains three different noise levels behind
each kind of Lombard speech produced, the proposed sys-
tem performance also exhibits its resilience towards varying
levels of background noise, induced Lombard Effect. Fixed,
single-class training is unable to provide good results since it
enhances the impact of Lombard Effect by narrowing training
to a single type of speech, which leaves the system vulnerable
to misclassified test data belonging to other speech types.

6. CONCLUSION

Deep neural networks are shown to outperform traditional
classifiers in distinguishing between neutral speech and
speech under different kinds of Lombard Effect under vari-
ous background noise-types and noise-levels. The resulting
accuracies are 95.7% for 2-way, 69.1% for 4-way and 60.0%
for 10-way classification using cepstral features. The pro-
posed probabilistically weighted system uses validation data
classification as a priori information and this results in a
more robust training of SID system. Appending this sys-
tem to background noise reduction algorithms can result in
improved robustness for other corpora. The additional val-
idation based information can also be used as metadata for
calibration [20]. Future research can focus on using this
system to counter environment and channel mismatch for
speaker recognition.
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